Cho a>b; và tính /S/biết
S=-[a-b-c]+[-c+b+a]-[a+b]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Hàm số y = f(x) thỏa mãn f'(x) < 0 ∀ x ∈ ( a ; b ) nên hàm số nghịch biến trên (a;b).
Do đó
Đáp án C
- Nhìn vào hình vẽ ta có phần thực a bị giới hạn − 2 < a < 2 , b ∈ ℝ
Chú ý: Cho số phức z = a + bi, điểm M(a;b) trong hệ trục tọa độ vuông góc của mặt phẳng được gọi là điểm biểu diễn số phức z.
Ta có B = x ∈ R : − 3 < x ≤ 5 = − 3 ; 5
khi đó A ∩ B = − 3 ; 1
Đáp án A
A = x ∈ ℝ : | x | ≥ 2 = − ∞ ; − 2 ∪ 2 ; + ∞ ⇒ C ℝ A = ℝ \ A = ( − 2 ; 2 )
Đáp án B
S=-(a-b-c)+(-c+b+a)-(a+b)
=-a+b+c-c+b+a-a-b
=-a+b+c+(-c)+b+a+(-a)+(-b)
=[(-a)+a+(-a)]+[b+b+(-b)]+[c+(-c)]
=-a+b
vì a>b nên |S|=a-b
vậy...
k mình nha. kb nữa...^_^...