1. Cho x + y = 1; \(x^2+y^2=13\). Tính \(x^3+y^3\)
2. Cho a+b+c+d=0. CMR: \(a^3+b^3+c^3+d^3=3\left(ac-bd\right)\left(b+d\right)\)
3. Cho x-y= -1; Tính GTBT: P = \(2\left(x^3-y^3\right)+3\left(x^2+y^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
|x+1| = 6
Trường hợp 1 : x + 1 = 6 => x = 5
Trường hợp 2 : x + 1 = -6 => x = -7
|y-1| = 14
Trường hợp 1 : y - 1 = 14 => y = 15
Trường hợp 2 : y - 1 = -14 => y = -13
Chúng ta cần chứng minh các điều kiện sau cho các số nguyên dương \(x\) và \(y\) thỏa mãn \(x^{3} + 1\) chia hết cho \(y + 1\) và \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
Chứng minh rằng \(x^{3} + 1\) chia hết cho \(y + 1\).
Giải: Ta đã biết rằng \(x^{3} + 1\) chia hết cho \(y + 1\), tức là:
\(\frac{x^{3} + 1}{y + 1} \in \mathbb{Z} .\)
Ta có thể xem xét \(x^{3} + 1\) dưới dạng nhân tử:
\(x^{3} + 1 = \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)
Ta cần chứng minh rằng \(\left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right)\) chia hết cho \(y + 1\). Điều này có nghĩa là \(y + 1\) là ước của \(x^{3} + 1\), hay là:
\(y + 1 \mid \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)
Giả sử rằng \(x^{3} + 1\) chia hết cho \(y + 1\), thì sẽ có một số \(k\) sao cho:
\(x^{3} + 1 = k \left(\right. y + 1 \left.\right) ,\)
tức là \(k\) là một số nguyên. Như vậy, \(x^{3} + 1\) chia hết cho \(y + 1\), và bài toán đã được chứng minh cho phần a.
Chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
Giải: Ta cần chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), tức là:
\(\frac{x^{3} y^{3} - 1}{y + 1} \in \mathbb{Z} .\)
Ta có thể biến đổi \(x^{3} y^{3} - 1\) theo công thức phân tích đa thức:
\(x^{3} y^{3} - 1 = \left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right) .\)
Ta cần chứng minh rằng \(\left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right)\) chia hết cho \(y + 1\).
Giả sử rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), ta có:
\(x^{3} y^{3} - 1 = m \left(\right. y + 1 \left.\right) ,\)
với một số nguyên \(m\), do đó \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
Như vậy, ta đã chứng minh được rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), hoàn thành bài toán phần b.
Kết luận: Chúng ta đã chứng minh được rằng:
1.
Ta có :
x+y=1
=> ( x+y) 2 = 12 = 1
<=> x2 + 2xy +y2 = 1
mà x2+y2 = 13
<=> 2xy = 1 -13 = -12
<=> xy = -6
Ta lại có :
x3 +y3 = (x+y)(x2 + y2 -xy )
mà x+y = 1 ; x2 + y2 = 13 ; xy = -6
=> x3 + y3 = 1 [ 13 - (- 6)]
=> x3 + y3 = 1(13+6)
=> x3 +y3 = 19