K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 giờ trước (21:22)

msc của 15 và 17

23 giờ trước (21:26)
P =1−21​+31​−41​+⋯+20231​−20241​ \(Q = \frac{1}{1013} + \frac{1}{1014} + \hdots + \frac{1}{2024}\)

Bước 1: Xét tổng P

Tổng \(P\) có dạng một chuỗi luân phiên (các số hạng dương và âm xen kẽ), có thể được viết lại dưới dạng:

\(P = \left(\right. 1 - \frac{1}{2} \left.\right) + \left(\right. \frac{1}{3} - \frac{1}{4} \left.\right) + \hdots + \left(\right. \frac{1}{2023} - \frac{1}{2024} \left.\right)\)

Mỗi cặp số hạng có dạng:

\(\frac{1}{k} - \frac{1}{k + 1} = \frac{k + 1 - k}{k \left(\right. k + 1 \left.\right)} = \frac{1}{k \left(\right. k + 1 \left.\right)}\)

Vậy tổng của tất cả các cặp từ 1 đến 2023 là:

\(P = \sum_{k = 1}^{2023} \frac{1}{k} - \sum_{k = 1}^{2023} \frac{1}{k + 1}\)

Tổng này gần giống với tổng điều hòa \(H_{n}\) (mà \(H_{n} sim ln ⁡ n\)), và có thể xấp xỉ:

\(P \approx ln ⁡ 2024 - ln ⁡ 2 = ln ⁡ \frac{2024}{2} = ln ⁡ 1012\)

Bước 2: Xét tổng Q

Tổng \(Q\) là một phần của tổng điều hòa từ 1013 đến 2024:

\(Q = \sum_{k = 1013}^{2024} \frac{1}{k}\)

Xấp xỉ tổng điều hòa:

\(Q \approx ln ⁡ 2024 - ln ⁡ 1012 = ln ⁡ \frac{2024}{1012} = ln ⁡ 2\)

Bước 3: So sánh P và Q

Từ các kết quả trên, ta thấy:

\(P \approx ln ⁡ 1012 , Q \approx ln ⁡ 2\)

\(ln ⁡ 1012\) lớn hơn \(ln ⁡ 2\) rất nhiều (\(ln ⁡ 1012 \approx 7\), trong khi \(ln ⁡ 2 \approx 0.693\)), ta có:

\(P > Q\)

Kết luận:

\(P > Q\) 4o
19 tháng 7 2023

42 : x + 36 : x = 6

19 tháng 7 2023

TH1

42:x=6

x= 42 :6 

X= 7

TH 2

36:x = 6

X = 36: 6

X= 6

TA
28 tháng 10 2023

4072299/4048

1 tháng 11 2023

cho mik câu trả lời cụ thể đc k bn

13 tháng 6 2023

Đặt A = 1 + 2 + 3 + 4 + ... + 2023

Tổng có 2023 - 1 + 1 số hạng

A = (2023 + 1) × 2023 : 2

= 2047276

-----------------------

Đặt B = 20 + 21 + 22 + ... + 2024

Tổng có: 2024 - 20 + 1 = 2005 số hạng

B = (2024 + 20) × 2005 : 2

= 2049110

------------------------

Đặt C = 2 + 4 + 6 + ... + 2024

Tổng có (2024 - 2) : 2 + 1 = 1012 số hạng

C = (2024 + 2) × 1012 : 2

= 1025156

------------------------

Đặt D = 1 + 2 + 4 + 8 + 16 + ... + 8192

2 × D = 2 + 4 + 8 + 16 + 32 + ... + 16384

2 × D - D = (2 + 4 + 8 + 16 + 32 + ... + 16384) - (1 + 2 + 4 + 8 + 16 + ... + 8192)

= 16384 - 1

= 16383

Vậy D = 16383

13 tháng 6 2023

\(a,A=1+2+3+4+5..+2023\)

Số số hạng:

\(\left(2023-1\right):1+1=2023\)

Tổng :

\(\dfrac{\left(2023+1\right).2023}{2}=2047276\)

\(b,20+21+22+..+2024\)

Số số hạng:

\(\left(2024-20\right):1+1=2005\)

Tổng:

\(\dfrac{\left(2024+20\right).2005}{2}=2049110\)

\(c,2+4+6+..+2024\)

Số số hạng:

\(\left(2024-2\right):2+1=1012\)

Tổng:

\(\dfrac{\left(2024+2\right).1012}{2}=1025156\)

 

15 tháng 7 2023

\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2023}\right)\left(1-\dfrac{1}{2024}\right)\)

=\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2022}{2023}.\dfrac{2023}{2024}=\dfrac{1}{2024}\)

15 tháng 7 2023

\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2024}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot...\cdot\dfrac{2023}{2024}\)

\(=\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot2023}{2\cdot3\cdot4\cdot5\cdot...\cdot2024}\)

\(=\dfrac{1}{2024}\)

1 tháng 11 2024

A = \(\dfrac{1}{2021.2022}\) + \(\dfrac{1}{2022.2023}\) + \(\dfrac{1}{2023.2024}\) + \(\dfrac{1}{2024.2025}\) - \(\dfrac{4}{2021.2025}\)

A = \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) + \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\) + \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\) - \(\dfrac{1}{2021}\) + \(\dfrac{1}{2025}\)

A = (\(\dfrac{1}{2021}\) - \(\dfrac{1}{2021}\))  + (\(\dfrac{1}{2022}\) - \(\dfrac{1}{2022}\)) + (\(\dfrac{1}{2023}\) - \(\dfrac{1}{2023}\)) + (\(\dfrac{1}{2024}\) - \(\dfrac{1}{2024}\)) + (\(\dfrac{1}{2025}\) - \(\dfrac{1}{2025}\))

A = 0 + 0  +0  + 0+ ... + 0

A = 0

3 tháng 5 2023

\(A=\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3-\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{2023}-\left(\dfrac{1}{2}\right)^{2024}\)

\(A=\dfrac{2}{2^2}-\dfrac{1}{2^2}+\dfrac{2}{2^4}-\dfrac{1}{2^4}+...+\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\)

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{2024}}\)

\(A=\dfrac{2^{2022}}{2^{2024}}+\dfrac{2^{2020}}{2^{2024}}+\dfrac{2^{2018}}{2^{2024}}+...+\dfrac{1}{2^{2024}}\)

\(2^2A=\dfrac{2^{2024}}{2^{2024}}+\dfrac{2^{2022}}{2^{2024}}+\dfrac{2^{2020}}{2^{2024}}+...+\dfrac{2^2}{2^{2024}}\)

\(\Rightarrow4A-A=3A=1-\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\)

\(3A=1-\left(\dfrac{2}{2^{2024}}+\dfrac{1}{2^{2024}}\right)\)

\(3A=1-\dfrac{3}{2^{2024}}\)

\(A=\dfrac{1-\dfrac{3}{2^{2024}}}{3}\)

\(A=\dfrac{3\left(\dfrac{1}{3}-\dfrac{1}{2^{2024}}\right)}{3}\)

\(A=\dfrac{1}{3}-\dfrac{1}{2^{2024}}\)

3 tháng 5 2023

giúp mk vs các bn. chiều nay mk phải nộp r

26 tháng 11 2023

a:

Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)

Từ 1 đến 2025 sẽ có:

\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)

Ta có: 1-3=5-7=...=2021-2023=-2

=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này

=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)

b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)

Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)

Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4

=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này

=>\(S=506\cdot\left(-4\right)=-2024\)

12 tháng 8 2023

\(1\dfrac{1}{2}\times1\dfrac{1}{3}\times1\dfrac{1}{4}\times...\times1\dfrac{1}{2023}\times1\dfrac{1}{2024}\)

\(=\left(1+\dfrac{1}{2}\right)\times\left(1+\dfrac{1}{3}\right)\times\left(1+\dfrac{1}{4}\right)\times...\times\left(1+\dfrac{1}{2023}\right)\times\left(1+\dfrac{1}{2024}\right)\)

\(=\dfrac{3}{2}\times\dfrac{4}{3}\times\dfrac{5}{4}\times\dfrac{6}{5}\times...\times\dfrac{2024}{2023}\times\dfrac{2025}{2024}\)

\(=\dfrac{3\times4\times5\times...\times2024\times2025}{2\times3\times4\times...\times2023\times2024}\)

\(=\dfrac{2025}{2}\)

\(=1012,5\)