cho P =1-1/2 +1/3 -1/4 + .... +1/2023-1/2024 Q=1/1013 + 1/1014+ 1/1015 ..... +1/2024 so sánh P và Q
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Đặt A = 1 + 2 + 3 + 4 + ... + 2023
Tổng có 2023 - 1 + 1 số hạng
A = (2023 + 1) × 2023 : 2
= 2047276
-----------------------
Đặt B = 20 + 21 + 22 + ... + 2024
Tổng có: 2024 - 20 + 1 = 2005 số hạng
B = (2024 + 20) × 2005 : 2
= 2049110
------------------------
Đặt C = 2 + 4 + 6 + ... + 2024
Tổng có (2024 - 2) : 2 + 1 = 1012 số hạng
C = (2024 + 2) × 1012 : 2
= 1025156
------------------------
Đặt D = 1 + 2 + 4 + 8 + 16 + ... + 8192
2 × D = 2 + 4 + 8 + 16 + 32 + ... + 16384
2 × D - D = (2 + 4 + 8 + 16 + 32 + ... + 16384) - (1 + 2 + 4 + 8 + 16 + ... + 8192)
= 16384 - 1
= 16383
Vậy D = 16383
\(a,A=1+2+3+4+5..+2023\)
Số số hạng:
\(\left(2023-1\right):1+1=2023\)
Tổng :
\(\dfrac{\left(2023+1\right).2023}{2}=2047276\)
\(b,20+21+22+..+2024\)
Số số hạng:
\(\left(2024-20\right):1+1=2005\)
Tổng:
\(\dfrac{\left(2024+20\right).2005}{2}=2049110\)
\(c,2+4+6+..+2024\)
Số số hạng:
\(\left(2024-2\right):2+1=1012\)
Tổng:
\(\dfrac{\left(2024+2\right).1012}{2}=1025156\)

\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2023}\right)\left(1-\dfrac{1}{2024}\right)\)
=\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2022}{2023}.\dfrac{2023}{2024}=\dfrac{1}{2024}\)
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot...\cdot\dfrac{2023}{2024}\)
\(=\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot2023}{2\cdot3\cdot4\cdot5\cdot...\cdot2024}\)
\(=\dfrac{1}{2024}\)

A = \(\dfrac{1}{2021.2022}\) + \(\dfrac{1}{2022.2023}\) + \(\dfrac{1}{2023.2024}\) + \(\dfrac{1}{2024.2025}\) - \(\dfrac{4}{2021.2025}\)
A = \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) + \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\) + \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\) - \(\dfrac{1}{2021}\) + \(\dfrac{1}{2025}\)
A = (\(\dfrac{1}{2021}\) - \(\dfrac{1}{2021}\)) + (\(\dfrac{1}{2022}\) - \(\dfrac{1}{2022}\)) + (\(\dfrac{1}{2023}\) - \(\dfrac{1}{2023}\)) + (\(\dfrac{1}{2024}\) - \(\dfrac{1}{2024}\)) + (\(\dfrac{1}{2025}\) - \(\dfrac{1}{2025}\))
A = 0 + 0 +0 + 0+ ... + 0
A = 0

\(A=\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3-\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{2023}-\left(\dfrac{1}{2}\right)^{2024}\)
\(A=\dfrac{2}{2^2}-\dfrac{1}{2^2}+\dfrac{2}{2^4}-\dfrac{1}{2^4}+...+\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{2024}}\)
\(A=\dfrac{2^{2022}}{2^{2024}}+\dfrac{2^{2020}}{2^{2024}}+\dfrac{2^{2018}}{2^{2024}}+...+\dfrac{1}{2^{2024}}\)
\(2^2A=\dfrac{2^{2024}}{2^{2024}}+\dfrac{2^{2022}}{2^{2024}}+\dfrac{2^{2020}}{2^{2024}}+...+\dfrac{2^2}{2^{2024}}\)
\(\Rightarrow4A-A=3A=1-\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\)
\(3A=1-\left(\dfrac{2}{2^{2024}}+\dfrac{1}{2^{2024}}\right)\)
\(3A=1-\dfrac{3}{2^{2024}}\)
\(A=\dfrac{1-\dfrac{3}{2^{2024}}}{3}\)
\(A=\dfrac{3\left(\dfrac{1}{3}-\dfrac{1}{2^{2024}}\right)}{3}\)
\(A=\dfrac{1}{3}-\dfrac{1}{2^{2024}}\)

a:
Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)
Từ 1 đến 2025 sẽ có:
\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)
Ta có: 1-3=5-7=...=2021-2023=-2
=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này
=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)
b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)
Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)
Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4
=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này
=>\(S=506\cdot\left(-4\right)=-2024\)

\(1\dfrac{1}{2}\times1\dfrac{1}{3}\times1\dfrac{1}{4}\times...\times1\dfrac{1}{2023}\times1\dfrac{1}{2024}\)
\(=\left(1+\dfrac{1}{2}\right)\times\left(1+\dfrac{1}{3}\right)\times\left(1+\dfrac{1}{4}\right)\times...\times\left(1+\dfrac{1}{2023}\right)\times\left(1+\dfrac{1}{2024}\right)\)
\(=\dfrac{3}{2}\times\dfrac{4}{3}\times\dfrac{5}{4}\times\dfrac{6}{5}\times...\times\dfrac{2024}{2023}\times\dfrac{2025}{2024}\)
\(=\dfrac{3\times4\times5\times...\times2024\times2025}{2\times3\times4\times...\times2023\times2024}\)
\(=\dfrac{2025}{2}\)
\(=1012,5\)
msc của 15 và 17
Bước 1: Xét tổng P
Tổng \(P\) có dạng một chuỗi luân phiên (các số hạng dương và âm xen kẽ), có thể được viết lại dưới dạng:
\(P = \left(\right. 1 - \frac{1}{2} \left.\right) + \left(\right. \frac{1}{3} - \frac{1}{4} \left.\right) + \hdots + \left(\right. \frac{1}{2023} - \frac{1}{2024} \left.\right)\)Mỗi cặp số hạng có dạng:
\(\frac{1}{k} - \frac{1}{k + 1} = \frac{k + 1 - k}{k \left(\right. k + 1 \left.\right)} = \frac{1}{k \left(\right. k + 1 \left.\right)}\)Vậy tổng của tất cả các cặp từ 1 đến 2023 là:
\(P = \sum_{k = 1}^{2023} \frac{1}{k} - \sum_{k = 1}^{2023} \frac{1}{k + 1}\)Tổng này gần giống với tổng điều hòa \(H_{n}\) (mà \(H_{n} sim ln n\)), và có thể xấp xỉ:
\(P \approx ln 2024 - ln 2 = ln \frac{2024}{2} = ln 1012\)Bước 2: Xét tổng Q
Tổng \(Q\) là một phần của tổng điều hòa từ 1013 đến 2024:
\(Q = \sum_{k = 1013}^{2024} \frac{1}{k}\)Xấp xỉ tổng điều hòa:
\(Q \approx ln 2024 - ln 1012 = ln \frac{2024}{1012} = ln 2\)Bước 3: So sánh P và Q
Từ các kết quả trên, ta thấy:
\(P \approx ln 1012 , Q \approx ln 2\)Vì \(ln 1012\) lớn hơn \(ln 2\) rất nhiều (\(ln 1012 \approx 7\), trong khi \(ln 2 \approx 0.693\)), ta có:
\(P > Q\)Kết luận:
\(P > Q\) 4o