Cho tứ giác ABCD có M;N;P lần lượt là trung điểm của BC ; DC ; AB Chứng minh : a. S( ABCD)<= 1/2(AM+AN)^2 b. PN<= 1/2(AB + DC )
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Những câu hỏi liên quan

17 tháng 11 2018
a) Ta có : \(AD=BC\left(gt\right)\)
=> ABCD là hình thang cân ( 2 cạnh bên = nhau )
b) Để MNPQ là hình chữ nhật thì \(\widehat{P}_1=90^o\)
Vì ABCD là hình thang cân ( câu a )
\(\Rightarrow AB//CD\)
Gọi I , K là 2 điểm nối từ A , B đến cạnh CD và vuông góc với CD
\(\Rightarrow AI//BK\) ( cùng vuông góc với CD )
Ta lại có : \(\widehat{P}_1=\widehat{K}\)( đ.vị ) (1)
Mà \(\widehat{K}=90^o\left(gt\right)\) (2)
Từ (1) và (2) \(\Rightarrow MNPQ\)là hình chữ nhật ( có góc = 90 độ )

8 tháng 11 2017
http://lazi.vn/edu/exercise/cho-tu-giac-abcd-goi-m-n-p-q-lan-luot-la-trung-diem-cua-cac-canh-ab-cd-ad-bc-chung-minh-vecto-mp-qn-mq-pn . Bạn vào link này nhé