Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Khi \(o_3=55^{\circ}\)
- Khi hai đường thẳng cắt nhau tại điểm \(O\), ta có bốn góc: \(o_1,o_2,o_3,o_4\).
- Các góc đối diện với nhau là bằng nhau, tức là:
- \(o_1=o_3\)
- \(o_2=o_4\)
- Từ \(o_3=55^{\circ}\), ta có:
- \(o_1=55^{\circ}\)
- Tổng các góc xung quanh điểm \(O\) là \(36 0^{\circ}\): \(o_1+o_2+o_3+o_4=360^{\circ}\)
- Thay giá trị của \(o_1\) và \(o_3\): \(55^{\circ}+o_2+55^{\circ}+o_4=360^{\circ}\) \(110^{\circ}+o_2+o_4=360^{\circ}\) \(o_2+o_4=250^{\circ}\)
- Vì \(o_2=o_4\), ta có: \(2o_2=250^{\circ}\textrm{ }\Longrightarrow\textrm{ o}_2=125^{\circ}\) \(o_4=125^{\circ}\)
- Kết quả:
- \(o_1=55^{\circ}\)
- \(o_2=125^{\circ}\)
- \(o_3=55^{\circ}\)
- \(o_4=125^{\circ}\)
b) Khi \(o_1+o_3=150^{\circ}\)
- Từ \(o_1+o_3=150^{\circ}\) và biết rằng \(o_1=o_3\): \(o_1+o_1=150^{\circ}\textrm{ }\Longrightarrow\textrm{ }2o_1=150^{\circ}\textrm{ }\Longrightarrow\textrm{ o}_1=75^{\circ}\) \(o_3=75^{\circ}\)
- Từ đó, ta có: \(o_2=180^{\circ}-75^{\circ}=105^{\circ}\) \(o_4=105^{\circ}\)
- \(o_2=180^{\circ}-o_1\) (góc phụ)
- \(o_4=o_2\) (góc đối diện)
- Kết quả:
- \(o_1=75^{\circ}\)
- \(o_2=105^{\circ}\)
- \(o_3=75^{\circ}\)
- \(_{O4}=105^{\circ}\)
Tóm tắt kết quả:
- a) \(o_1=55^{\circ},o_2=125^{\circ},o_3=55^{\circ},o_4=125^{\circ}\)
- b) \(o_1=75^{\circ},o_2=105^{\circ},o_3=75^{\circ},o_4=105^{\circ}\)
- THAM KHẢO
Giải:
\(\hat{o_1}\) = \(\hat{O_3}\) = \(55^0\) (hai góc đối đỉnh)
\(\hat{O4}\) + \(\hat{O3}\) = 180\(^0\) (hai góc kề bù)
\(\hat{O_4}\) = 180\(^0\) - \(\hat{O_3}\)
\(\hat{O}_4\) = 180\(^0\) - 55\(^0\) = 125\(^0\)
\(\hat{O_4}\) = \(\hat{O_2}\) = 125\(^0\) (hai góc đối đỉnh)

a: (x-2)(x+3)>0
TH1: \(\begin{cases}x-2>0\\ x+3>0\end{cases}\Rightarrow\begin{cases}x>2\\ x>-3\end{cases}\Rightarrow x>2\)
TH2: \(\begin{cases}x-2<0\\ x+3<0\end{cases}\Rightarrow\begin{cases}x<2\\ x<-3\end{cases}\)
=>x<-3
b: (2x-1)(-x+1)>0
=>(2x-1)(x-1)<0
TH1: \(\begin{cases}2x-1>0\\ x-1<0\end{cases}\Longrightarrow\begin{cases}x>\frac12\\ x<1\end{cases}\)
=>\(\frac12
TH2: \(\begin{cases}2x-1<0\\ x-1>0\end{cases}\Rightarrow\begin{cases}x<\frac12\\ x>1\end{cases}\)
=>x∈∅
c: (x+1)(3x-6)<0
=>3(x+1)(x-2)<0
=>(x+1)(x-2)<0
TH1: \(\begin{cases}x+1>0\\ x-2<0\end{cases}\Rightarrow\begin{cases}x>-1\\ x<2\end{cases}\Rightarrow-1
TH2: \(\begin{cases}x+1<0\\ x-2>0\end{cases}\Rightarrow\begin{cases}x<-1\\ x>2\end{cases}\)
=>x∈∅

=2^40 . 3 ^35 / 2^37.3^36
=2^3.2^37 . 3^35 / 2^37 . 3 ^35 .3
= 2^3 / 3
=8/3
CHÚC BẠN HỌC TỐT!!
Ta có: \(\frac{4^{20}\cdot3^{35}}{2^{37}\cdot27^{12}}\)
\(=\frac{\left(2^2\right)^{20}\cdot3^{35}}{2^{37}\cdot\left(3^3\right)^{12}}\)
\(=\frac{2^{40}}{2^{37}}\cdot\frac{3^{35}}{3^{36}}=\frac{2^3}{3}=\frac83\)

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

Đọc bài thơ "Đồng dao mùa xuân", em thấu hiểu sâu sắc về trách nhiệm thiêng liêng với quê hương. Hình ảnh người lính trẻ bỏ lại tuổi xuân hồn nhiên, xả thân chiến đấu vì đất nước đã gợi lên trong em niềm biết ơn vô bờ bến. Trách nhiệm ấy không chỉ là việc bảo vệ Tổ quốc, mà còn là sự tiếp nối truyền thống vẻ vang, là đóng góp sức mình để dựng xây và phát triển đất nước. Là thế hệ trẻ hôm nay, em ý thức rằng mình cần tích cực tham gia vào các hoạt động tập thể, trau dồi kiến thức, rèn luyện bản thân, để góp phần làm rạng rỡ thêm trang sử quê hương, xứng đáng với bao thế hệ đã ngã xuống vì độc lập tự do.


Olm chào em, đổi quà trên olm không mất phí, em nhé. Đây là phần thưởng giành cho các em đã có thành tích học tập đáng kể cũng như tích cực tham gia các cuộc thi trên Olm, tích cực hỗ trợ bạn bè trên cộng đồng hỏi đáp. Vì vậy, Olm sẽ hoàn toàn không thu bất cứ khoản phí nào cả.
ko nha nếu muốn đổi quà thì bn cần kiếm xu thì sẽ đổi đc á
tht là lp 7 kh v
📘 1. Nhị thức Newton là gì?
Nhị thức Newton là một công thức dùng để khai triển lũy thừa của một tổng dạng \(\left(\right. a + b \left.\right)^{n}\), trong đó \(n\) là số tự nhiên.
✅ Công thức nhị thức Newton:
\(\left(\right. a + b \left.\right)^{n} = \sum_{k = 0}^{n} \left(\right. \frac{n}{k} \left.\right) a^{n - k} b^{k}\)
Trong đó:
\(\left(\right. \frac{n}{k} \left.\right) = \frac{n !}{k ! \left(\right. n - k \left.\right) !}\)
🎯 Ví dụ:
Khai triển \(\left(\right. a + b \left.\right)^{3}\) bằng nhị thức Newton:
\(\left(\right. a + b \left.\right)^{3} = \left(\right. \frac{3}{0} \left.\right) a^{3} b^{0} + \left(\right. \frac{3}{1} \left.\right) a^{2} b^{1} + \left(\right. \frac{3}{2} \left.\right) a^{1} b^{2} + \left(\right. \frac{3}{3} \left.\right) a^{0} b^{3}\) \(= 1 a^{3} + 3 a^{2} b + 3 a b^{2} + 1 b^{3} = a^{3} + 3 a^{2} b + 3 a b^{2} + b^{3}\)
🟨 2. Tam giác Pascal là gì?
Tam giác Pascal là một bảng sắp xếp các hệ số nhị thức \(\left(\right. \frac{n}{k} \left.\right)\) theo hình tam giác. Mỗi số trong tam giác là tổng của hai số phía trên nó.
🔻 Cấu trúc của tam giác Pascal:
🎯 Ví dụ ứng dụng:
Dùng tam giác Pascal để khai triển \(\left(\right. x + y \left.\right)^{4}\):
→ Hàng thứ 4 là: 1 4 6 4 1
\(\left(\right. x + y \left.\right)^{4} = 1 x^{4} + 4 x^{3} y + 6 x^{2} y^{2} + 4 x y^{3} + 1 y^{4}\)
✅ Tóm tắt dễ nhớ:
Nội dung
Nhị thức Newton
Tam giác Pascal
Khái niệm
Khai triển
\(\left(\right. a + b \left.\right)^{n}\)(a+b)n(a + b)^n(a+b)n
Bảng hệ số
\(\left(\right. \frac{n}{k} \left.\right)\)(nk)\binom{n}{k}(kn)
Dạng tổng quát
\(\left(\right. a + b \left.\right)^{n} = \sum_{k = 0}^{n} \left(\right. \frac{n}{k} \left.\right) a^{n - k} b^{k}\)(a+b)n=∑k=0n(nk)an−kbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k}b^k(a+b)n=∑k=0n(kn)an−kbk
Các hệ số nhị thức được sắp xếp theo hình tam giác
Ứng dụng
Giải toán khai triển, tổ hợp, tính nhanh
Tìm hệ số nhị thức nhanh chóng, ứng dụng trong nhị thức Newton
xin 1 tick