Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài toán:
Tam giác ABC vuông tại A, đường cao AH hạ từ A xuống BC. Biết:
- HB = 64 mm
- HC = 81 mm
Yêu cầu: Tính độ dài các cạnh góc vuông AB, AC và số đo góc B, C.
Phân tích:
Khi có đường cao AH từ đỉnh A vuông góc với BC, ta có các tam giác đồng dạng:
- ΔABH ~ ΔAHC ~ ΔABC
Bước 1: Tính BC
Đường cao AH chia BC thành 2 đoạn:
- HB = 64 mm
- HC = 81 mm
Nên:
\(B C = H B + H C = 64 + 81 = 145 \&\text{nbsp};\text{mm}\)
Bước 2: Tính AH
Áp dụng hệ thức về đường cao trong tam giác vuông:
\(A H^{2} = H B \times H C\)
Thay số:
\(A H^{2} = 64 \times 81 = 5184 \Rightarrow A H = \sqrt{5184} = 72 \&\text{nbsp};\text{mm}\)
Bước 3: Tính AB và AC
Ta biết:
- \(A B^{2} = B H \times B C\)
- \(A C^{2} = C H \times B C\)
Vậy:
\(A B^{2} = 64 \times 145 = 9280 \Rightarrow A B = \sqrt{9280} \approx 96.3 \&\text{nbsp};\text{mm}\) \(A C^{2} = 81 \times 145 = 11745 \Rightarrow A C = \sqrt{11745} \approx 108.4 \&\text{nbsp};\text{mm}\)
Bước 4: Tính góc B và góc C
Áp dụng định nghĩa lượng giác trong tam giác vuông:
\(tan B = \frac{A C}{A B} = \frac{108.4}{96.3} \approx 1.126\)
Tính góc B:
\(B = arctan \left(\right. 1.126 \left.\right) \approx 48.3^{\circ}\)
Vì tam giác vuông tại A nên:
\(C = 90^{\circ} - B = 41.7^{\circ}\)
Kết quả:
- \(A B \approx 96.3 \&\text{nbsp};\text{mm}\)
- \(A C \approx 108.4 \&\text{nbsp};\text{mm}\)
- \(\angle B \approx 48.3^{\circ}\)
- \(\angle C \approx 41.7^{\circ}\)
HB=64mm=6,4cm
HC=81mm=8,1cm
BC=BH+CH=6,4+8,1=14,5(cm)
Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
\(\hat{HBA}\) chung
Do đó: ΔBHA~ΔBAC
=>\(\frac{BH}{BA}=\frac{BA}{BC}\)
=>\(BH\cdot BC=AB^2\)
=>\(BA^2=6,4\cdot14,5=92,8\)
=>\(BA=\sqrt{92,8}=\frac{4\sqrt{145}}{5}\) (cm)
ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(AC^2=145-\left(\frac{4\sqrt{145}}{5}\right)^2=\frac{261}{5}\)
=>\(AC=\sqrt{\frac{261}{5}}=\frac{3\sqrt{145}}{5}\) (cm)
Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{AC}=\frac{4\sqrt{145}}{5}:\sqrt{145}=\frac45\)
nên \(\hat{C}\) ≃53 độ
ΔABC vuông tại A
=>\(\hat{ABC}+\hat{C}=90^0\)
=>\(\hat{ABC}=90^0-53^0=37^0\)

Đặt tên cho tam giác vuông là ABC , góc A vuông, đường cao AH
Giải :
Ta có :\(\Delta ABC,\widehat{A}=90^o,AH\perp BC\)
Với \(\frac{AB}{AC}=\frac{3}{4}\)
\(\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)
\(\Rightarrow\)\(\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{15625}{25}\)\(=625\)
\(AB^2=9.625=5625\)
\(\Rightarrow AB=75\left(cm\right)\)
\(AC^2=16.625=10000\)
\(\Rightarrow AC=100\left(cm\right)\)
Xét \(\Delta ABC\)vuông tại A, \(AH\perp BC\)
Ta có : \(AB^2=BH.BC\)(hệ thức...)
\(\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\left(cm\right)\)
Ta có : \(H\in BC\Rightarrow BH+HC=BC\)
\(\Rightarrow CH=BC-BH\)
\(\Rightarrow CH=125-45=80\left(cm\right)\)

Đặt \(\frac{AB}{BC}=\frac{3}{5}=x\Rightarrow AB=3x;BC=5x\)
Tam giác ABC vuông tại A, theo py ta go:
\(AB^2+AC^2=BC^2\Rightarrow9x^2+144=25x^2\Rightarrow16x^2=144\Leftrightarrow x^2=9\)
=> X = 3 ; AB = 3x = 3.3=9 ; BC= 5x = 5.3 = 15
TAm giac ABC vuông tại A theo hệ thức lượng
AH.BC = AB.AC => AH= (AB.AC)/BC = (9.12)/15 = 7,2cm
AB^2 = BC . BH => BH = AB^2 /BC = 9^2/15 = 5,4
=> HC = BC - HB = 15 - 5,4 = 9,6cm
VẬY AH = 7,2 ; BH = 5,4;CH = 9,6

\(\cos C=\sqrt{1-\sin^2C}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}\)
\(\Rightarrow\cos C=\frac{4}{5}\)
\(\Rightarrow\tan C=\frac{\sin C}{\cos C}=\frac{3}{5}:\frac{4}{5}=\frac{3}{4}\)và \(\cot C=\frac{4}{3}\)
Ta có: \(\widehat{C};\widehat{B}\)là hai góc phụ nhau
\(\Rightarrow\hept{\begin{cases}\sin C=\cos B\\\cos C=\sin B\end{cases};\hept{\begin{cases}\tan C=\cot B\\\cot C=\tan B\end{cases}}}\)
\(\Rightarrow\sin B=\frac{4}{5};\cos B=\frac{3}{5};\tan B=\frac{4}{3};\cot B=\frac{3}{4}\)
Ta có: \(\sin C=\frac{AB}{BC}=\frac{3}{5}\)
=> \(\frac{AB}{3}=\frac{BC}{5}=k\left(k\inℕ\right)\)
=> \(\hept{\begin{cases}AB=3k\\BC=5k\end{cases}}\)
=> \(AC=\sqrt{\left(5k\right)^2-\left(3k\right)^2}=\sqrt{16k^2}=4k\)
Đến đây thì xong rồi:))
\(\sin B=\frac{AC}{BC}=\frac{4k}{5k}=\frac{4}{5}\) ; \(\cos B=\frac{AB}{BC}=\frac{3k}{5k}=\frac{3}{5}\)
\(\tan B=\frac{AC}{AB}=\frac{4k}{3k}=\frac{4}{3}\) ; \(\cot B=\frac{AB}{AC}=\frac{3k}{4k}=\frac{3}{4}\)

A B C H M
Tam giác ABC vuông tại A có AM kà trung tuyến => AM = BC/2 = \(\sqrt{41}\)/ 2
Ta có: \(\frac{AH}{AM}=\frac{40}{41}\) => AH = \(\frac{40}{41}.\frac{\sqrt{41}}{2}=\frac{20\sqrt{41}}{41}\)
Đặt AB = c; AC = b
=> b.c = AH . BC = \(\frac{20\sqrt{41}}{41}.\sqrt{41}=20\)
Áp dụng ĐL Pi ta go có : b2 + c2 = BC2 = 41
=> (b + c)2 = b2 + c2 + 2bc = 41 + 2.20 = 81 => b + c = 9 (do b; c là độ dài đoạn thẳng nên b ; c > 0 ) => b = 9 - c
Thay vào b.c = 20 ta được (9 - c).c = 20 <=> c2 - 9c + 20 = 0
<=> (c-4)(c - 5) = 0 <=> c = 4 hoặc c = 5
c = 4 => b = 5
c= 5 => b = 4
Vậy 2 cạnh góc vuông là 4 và 5

Tam giác ABC vuông tại A; BC = 26; AB/AC = 5/12; đường cao AH
B A C H
\(\frac{AB}{AC}=\frac{5}{12}\) \(\Rightarrow\)\(\frac{AB}{5}=\frac{AC}{12}=k\)=> \(AB=5k;\)\(AC=12k\) (K > 0)
Áp dụng Pytago ta có:
AB2 + AC2 = BC2
<=> 25K2 + 144K2 = 676
<=> 169K2 = 676
<=> K2 = 4
<=> K =2
=> AB = 5.2 = 10
AC = 12.2 = 24
Áp dụng hệ thức lượng ta có:
AB2 = BH.BC
=> BH = AB2/BC = 50/13
=> CH = BC - BH = 288/13
*Giải bài toán*
Cho tam giác ABC vuông tại A, biết tỉ số hai cạnh góc vuông là 5/12 và cạnh huyền BC = 26 cm. Tính cosin góc B.
*Tìm độ dài hai cạnh góc vuông*
Gọi AB = 5x và AC = 12x. Theo định lý Pythagore:
\[(5x)^2 + (12x)^2 = 26^2\]
\[25x^2 + 144x^2 = 676\]
\[169x^2 = 676\]
\[x^2 = 4\]
\[x = 2\]
Vậy AB = 10 cm và AC = 24 cm.
*Tính cosin góc B*
\[\cos B = \frac{AB}{BC} = \frac{10}{26} = \frac{5}{13}\]
*Kết quả*
\[\cos B = \frac{5}{13}\]
\(\frac{AB}{AC}=\frac{5}{12}\)
=>\(\frac{AB}{5}=\frac{AC}{12}\)
Đặt \(\frac{AB}{5}=\frac{AC}{12}=k\)
=>AB=5k; AC=12k
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB^2+AC^2=26^2=676\)
=>\(\left(5k\right)^2+\left(12k\right)^2=676\)
=>\(169k^2=676\)
=>\(k^2=4\)
=>k=2
=>\(AB=5\cdot2=10\left(\operatorname{cm}\right);AC=5\cdot12=24\left(\operatorname{cm}\right)\)
Xét ΔABC vuông tại A có \(cosB=\frac{AB}{BC}=\frac{10}{26}=\frac{5}{13}\)