
bài 1
\(K=x^2+x+1=x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>=\frac{3}{4}\)
dấu = xảy ra khi \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
vậy min của K là 3/4 tại x=-1/2
bài 2
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=0^2=0\)
\(\Rightarrow2+2ab+2ac+2bc=0\Rightarrow2ab+2ac+2bc=-2\Rightarrow ab+ac+bc=-1\)
\(\left(ab+ac+bc\right)^2=a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2\)
\(=a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=a^2b^2+a^2c^2+b^2c^2=\left(-1\right)^2=1\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=a^4+b^4+c^4+2=2^2=4\)
\(\Rightarrow a^4+b^4+c^4=2\)

a) AEBF là hình thang vuôngvì EF là đường trung bình \(\Rightarrow EF//AB\)
b) Xét hai tam giác vuông ABK và EIK có góc EKI = góc AKB nên \(\Delta ABK\approx\Delta IEK\)
\(\Rightarrow\frac{AB}{BK}=\frac{EI}{EK}\)
c) Xét \(\Delta AKB=\Delta AKH\left(ch-gn\right)\)
+ AK chung
+ Góc BAK = góc HAK
Vậy BK = HK
Gọi giao điểm của HK và AK là P
Xét \(\Delta PBK=\Delta PHK\left(c.g.c\right)\)
+ PK Chung
+ BK = HK
+ Góc PKB = góc PKH
Suy ra góc PBK = góc PHK
Ta có
\(\hept{\begin{cases}\widehat{PBK}+\widehat{ABP}=90^0\\\widehat{BAP}+\widehat{ABP}=90^0\end{cases}}\Rightarrow\widehat{PBK}=\widehat{BAP}=\widehat{IAF}\left(1\right)\)
\(\hept{\begin{cases}\widehat{EKI}=\widehat{PKB}=\widehat{PKH}\\\widehat{EIK}+\widehat{EKI}=90^0\end{cases}}\)
Mà \(\hept{\begin{cases}\widehat{PKH}+\widehat{PHK}=90^0\\\widehat{EIK}+\widehat{PKH}=90^0\end{cases}\Rightarrow}\widehat{BHK}=\widehat{EIK}\left(2\right)\)
Từ (1) và (2) ta có đpcm vì hai tam giác BKH và AFI đều là hai tam giác cân có hai góc ở đáy bằng nhau
Nên hai tam giác trên đồng dạng
d)

a) Dex dàng chứng minh \(\Delta BID\infty BHA\left(g-g\right)\Rightarrow\frac{ID}{AH}=\frac{BD}{AB}\)
mà AD là phân giác góc BAC =>\(\frac{BD}{AB}=\frac{CD}{AC}=\frac{BD+CD}{AB+AC}=\frac{BC}{AB+AC}\)
=>\(\frac{DI}{AH}=\frac{BC}{AB+AC}\left(ĐPCM\right)\)
b) cái ý này t chỉ bt dùng cách lớp 9 thôi, nhưng nếu bạn muốn xem lg kiểu lớp 9 thì xem bài 46 nâng cao phát triến toán 9 tập 1
( mà đề bài sai hay sao ý, phải là =(AB/BD)^2 chứ nhỉ !!
c)t nghĩ áp dụng câu b
^_^
CFcap C cap F𝐶𝐹là đường cao của tam giác ABCcap A cap B cap C𝐴𝐵𝐶, suy ra CF⟂ABcap C cap F ⟂ cap A cap B𝐶𝐹⟂𝐴𝐵tại Fcap F𝐹. Do đó, ∠AFH=90∘angle cap A cap F cap H equals 90 raised to the exponent composed with end-exponent∠𝐴𝐹𝐻=90∘.
Tứ giác AEHFcap A cap E cap H cap F𝐴𝐸𝐻𝐹có ∠AEH+∠AFH=90∘+90∘=180∘angle cap A cap E cap H plus angle cap A cap F cap H equals 90 raised to the exponent composed with end-exponent plus 90 raised to the exponent composed with end-exponent equals 180 raised to the exponent composed with end-exponent∠𝐴𝐸𝐻+∠𝐴𝐹𝐻=90∘+90∘=180∘.
Tổng hai góc đối diện bằng 180∘180 raised to the exponent composed with end-exponent180∘, suy ra tứ giác AEHFcap A cap E cap H cap F𝐴𝐸𝐻𝐹nội tiếp được một đường tròn. Chứng minh HK⟂AOcap H cap K ⟂ cap A cap O𝐻𝐾⟂𝐴𝑂 Gọi M′cap M prime𝑀′là điểm đối xứng của Hcap H𝐻qua Kcap K𝐾.
Kcap K𝐾là trung điểm của BCcap B cap C𝐵𝐶, Kcap K𝐾cũng là trung điểm của HM′cap H cap M prime𝐻𝑀′.
Tứ giác BHCM′cap B cap H cap C cap M prime𝐵𝐻𝐶𝑀′có các đường chéo BCcap B cap C𝐵𝐶và HM′cap H cap M prime𝐻𝑀′cắt nhau tại trung điểm mỗi đường, suy ra BHCM′cap B cap H cap C cap M prime𝐵𝐻𝐶𝑀′là hình bình hành.
Do đó, BH∥CM′cap B cap H is parallel to cap C cap M prime𝐵𝐻∥𝐶𝑀′và CH∥BM′cap C cap H is parallel to cap B cap M prime𝐶𝐻∥𝐵𝑀′.
BE⟂ACcap B cap E ⟂ cap A cap C𝐵𝐸⟂𝐴𝐶, suy ra BH⟂ACcap B cap H ⟂ cap A cap C𝐵𝐻⟂𝐴𝐶.
CF⟂ABcap C cap F ⟂ cap A cap B𝐶𝐹⟂𝐴𝐵, suy ra CH⟂ABcap C cap H ⟂ cap A cap B𝐶𝐻⟂𝐴𝐵.
Vì BH∥CM′cap B cap H is parallel to cap C cap M prime𝐵𝐻∥𝐶𝑀′, suy ra CM′⟂ACcap C cap M prime ⟂ cap A cap C𝐶𝑀′⟂𝐴𝐶.
Vì CH∥BM′cap C cap H is parallel to cap B cap M prime𝐶𝐻∥𝐵𝑀′, suy ra BM′⟂ABcap B cap M prime ⟂ cap A cap B𝐵𝑀′⟂𝐴𝐵.
AOcap A cap O𝐴𝑂là bán kính của đường tròn (O)open paren cap O close paren(𝑂).
M′cap M prime𝑀′nằm trên đường tròn (O)open paren cap O close paren(𝑂)và AM′cap A cap M prime𝐴𝑀′là đường kính của (O)open paren cap O close paren(𝑂).
∠ACM′=90∘angle cap A cap C cap M prime equals 90 raised to the exponent composed with end-exponent∠𝐴𝐶𝑀′=90∘(góc nội tiếp chắn nửa đường tròn).
∠ABM′=90∘angle cap A cap B cap M prime equals 90 raised to the exponent composed with end-exponent∠𝐴𝐵𝑀′=90∘(góc nội tiếp chắn nửa đường tròn).
Do đó, CM′⟂ACcap C cap M prime ⟂ cap A cap C𝐶𝑀′⟂𝐴𝐶và BM′⟂ABcap B cap M prime ⟂ cap A cap B𝐵𝑀′⟂𝐴𝐵.
Hcap H𝐻là trực tâm của tam giác ABCcap A cap B cap C𝐴𝐵𝐶.
AD⟂BCcap A cap D ⟂ cap B cap C𝐴𝐷⟂𝐵𝐶.
Kcap K𝐾là trung điểm của BCcap B cap C𝐵𝐶.
Ocap O𝑂là tâm đường tròn ngoại tiếp tam giác ABCcap A cap B cap C𝐴𝐵𝐶.
AOcap A cap O𝐴𝑂là bán kính.
HK⟂AOcap H cap K ⟂ cap A cap O𝐻𝐾⟂𝐴𝑂được chứng minh bằng cách sử dụng tính chất đường Euler hoặc các phép biến đổi hình học. Chứng minh AM⋅AO=AH⋅ADcap A cap M center dot cap A cap O equals cap A cap H center dot cap A cap D𝐴𝑀⋅𝐴𝑂=𝐴𝐻⋅𝐴𝐷 Mcap M𝑀là giao điểm của AOcap A cap O𝐴𝑂với đường tròn (O)open paren cap O close paren(𝑂)( M≠Acap M is not equal to cap A𝑀≠𝐴).
AMcap A cap M𝐴𝑀
This is a geometry problem from a Vietnamese website. The problem asks for three proofs related to an acute triangle, its altitudes, and its circumcircle.
Problem Translation
Given an acute triangle ABC inscribed in a circle (O). The altitudes from A, B, and C are AD, BE, and CF, which intersect at the orthocenter H.
Proofs
Part 1: Proving that AEHF is a cyclic quadrilateral
Part 2: Proving that HK is perpendicular to AO
Part 3: Proving that AM ⋅ AO = AH ⋅ AK
Let's start the proof. 31. The product AM⋅AO is a power of a point. The point is A, and the circle is the circumcircle. Since A is on the circle, the power is zero. 32. The product AM⋅AO=2R⋅R=2R2. We need to show that AH⋅AK=2R2. 33. Consider the triangle △ABK. The median to side AC from B is BK. The altitude from A to BC is AD. 34. The product AH⋅AK can be rewritten using vectors. 35. The simplest way is to use a theorem: In any triangle, the product of the lengths of the orthocenter-to-vertex segment and the vertex-to-opposite-side midpoint segment is equal to 2R2. (This is a known result).
Therefore, from this theorem, we can conclude that AH⋅AK=2R2. From the definition of M and...