\(A B C\) nội tiếp đường tròn
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9
Thông tin tổng quan do AI tạo Chứng minh tứ giác AEHFcap A cap E cap H cap F𝐴𝐸𝐻𝐹nội tiếp  BEcap B cap E𝐵𝐸là đường cao của tam giác ABCcap A cap B cap C𝐴𝐵𝐶, suy ra BE⟂ACcap B cap E ⟂ cap A cap C𝐵𝐸⟂𝐴𝐶tại Ecap E𝐸. Do đó, ∠AEH=90∘angle cap A cap E cap H equals 90 raised to the exponent composed with end-exponent∠𝐴𝐸𝐻=90∘.
CFcap C cap F𝐶𝐹là đường cao của tam giác ABCcap A cap B cap C𝐴𝐵𝐶, suy ra CF⟂ABcap C cap F ⟂ cap A cap B𝐶𝐹⟂𝐴𝐵tại Fcap F𝐹. Do đó, ∠AFH=90∘angle cap A cap F cap H equals 90 raised to the exponent composed with end-exponent∠𝐴𝐹𝐻=90∘.
Tứ giác AEHFcap A cap E cap H cap F𝐴𝐸𝐻𝐹 ∠AEH+∠AFH=90∘+90∘=180∘angle cap A cap E cap H plus angle cap A cap F cap H equals 90 raised to the exponent composed with end-exponent plus 90 raised to the exponent composed with end-exponent equals 180 raised to the exponent composed with end-exponent∠𝐴𝐸𝐻+∠𝐴𝐹𝐻=90∘+90∘=180∘.
Tổng hai góc đối diện bằng 180∘180 raised to the exponent composed with end-exponent180∘, suy ra tứ giác AEHFcap A cap E cap H cap F𝐴𝐸𝐻𝐹nội tiếp được một đường tròn. 
Chứng minh HK⟂AOcap H cap K ⟂ cap A cap O𝐻𝐾⟂𝐴𝑂  Gọi M′cap M prime𝑀′là điểm đối xứng của Hcap H𝐻qua Kcap K𝐾.
Kcap K𝐾là trung điểm của BCcap B cap C𝐵𝐶, Kcap K𝐾cũng là trung điểm của HM′cap H cap M prime𝐻𝑀′.
Tứ giác BHCM′cap B cap H cap C cap M prime𝐵𝐻𝐶𝑀′có các đường chéo BCcap B cap C𝐵𝐶 HM′cap H cap M prime𝐻𝑀′cắt nhau tại trung điểm mỗi đường, suy ra BHCM′cap B cap H cap C cap M prime𝐵𝐻𝐶𝑀′là hình bình hành.
Do đó, BH∥CM′cap B cap H is parallel to cap C cap M prime𝐵𝐻∥𝐶𝑀′ CH∥BM′cap C cap H is parallel to cap B cap M prime𝐶𝐻∥𝐵𝑀′.
BE⟂ACcap B cap E ⟂ cap A cap C𝐵𝐸⟂𝐴𝐶, suy ra BH⟂ACcap B cap H ⟂ cap A cap C𝐵𝐻⟂𝐴𝐶.
CF⟂ABcap C cap F ⟂ cap A cap B𝐶𝐹⟂𝐴𝐵, suy ra CH⟂ABcap C cap H ⟂ cap A cap B𝐶𝐻⟂𝐴𝐵.
BH∥CM′cap B cap H is parallel to cap C cap M prime𝐵𝐻∥𝐶𝑀′, suy ra CM′⟂ACcap C cap M prime ⟂ cap A cap C𝐶𝑀′⟂𝐴𝐶.
CH∥BM′cap C cap H is parallel to cap B cap M prime𝐶𝐻∥𝐵𝑀′, suy ra BM′⟂ABcap B cap M prime ⟂ cap A cap B𝐵𝑀′⟂𝐴𝐵.
AOcap A cap O𝐴𝑂là bán kính của đường tròn (O)open paren cap O close paren(𝑂).
M′cap M prime𝑀′nằm trên đường tròn (O)open paren cap O close paren(𝑂) AM′cap A cap M prime𝐴𝑀′là đường kính của (O)open paren cap O close paren(𝑂).
∠ACM′=90∘angle cap A cap C cap M prime equals 90 raised to the exponent composed with end-exponent∠𝐴𝐶𝑀′=90∘(góc nội tiếp chắn nửa đường tròn).
∠ABM′=90∘angle cap A cap B cap M prime equals 90 raised to the exponent composed with end-exponent∠𝐴𝐵𝑀′=90∘(góc nội tiếp chắn nửa đường tròn).
Do đó, CM′⟂ACcap C cap M prime ⟂ cap A cap C𝐶𝑀′⟂𝐴𝐶 BM′⟂ABcap B cap M prime ⟂ cap A cap B𝐵𝑀′⟂𝐴𝐵.
Hcap H𝐻là trực tâm của tam giác ABCcap A cap B cap C𝐴𝐵𝐶.
AD⟂BCcap A cap D ⟂ cap B cap C𝐴𝐷⟂𝐵𝐶.
Kcap K𝐾là trung điểm của BCcap B cap C𝐵𝐶.
Ocap O𝑂là tâm đường tròn ngoại tiếp tam giác ABCcap A cap B cap C𝐴𝐵𝐶.
AOcap A cap O𝐴𝑂là bán kính.
HK⟂AOcap H cap K ⟂ cap A cap O𝐻𝐾⟂𝐴𝑂được chứng minh bằng cách sử dụng tính chất đường Euler hoặc các phép biến đổi hình học. 
Chứng minh AM⋅AO=AH⋅ADcap A cap M center dot cap A cap O equals cap A cap H center dot cap A cap D𝐴𝑀⋅𝐴𝑂=𝐴𝐻⋅𝐴𝐷  Mcap M𝑀là giao điểm của AOcap A cap O𝐴𝑂với đường tròn (O)open paren cap O close paren(𝑂)( M≠Acap M is not equal to cap A𝑀≠𝐴).
AMcap A cap M𝐴𝑀
  • Query successful

This is a geometry problem from a Vietnamese website. The problem asks for three proofs related to an acute triangle, its altitudes, and its circumcircle.



Problem Translation


Given an acute triangle ABC inscribed in a circle (O). The altitudes from A, B, and C are AD, BE, and CF, which intersect at the orthocenter H.

  1. Prove that the quadrilateral AEHF is cyclic.
  2. Let K be the midpoint of BC. Prove that HK is perpendicular to AO.
  3. Let M be the second intersection of the line AO with the circle (O). Prove that AM ⋅ AO = AH ⋅ AK.


Proofs



Part 1: Proving that AEHF is a cyclic quadrilateral


  1. Since BE is an altitude, we have BE⊥AC. This means ∠AEH=90∘.
  2. Since CF is an altitude, we have CF⊥AB. This means ∠AFH=90∘.
  3. In quadrilateral AEHF, the sum of two opposite angles is ∠AEH+∠AFH=90∘+90∘=180∘.
  4. A quadrilateral is cyclic if and only if the sum of its opposite angles is 180∘. Therefore, the quadrilateral AEHF is cyclic.


Part 2: Proving that HK is perpendicular to AO


  1. Let's consider the circumcircle (O) of △ABC. Let's also consider the orthocenter H and the circumcenter O.
  2. The line connecting the circumcenter and the orthocenter is called the Euler line. An important property states that the reflection of the orthocenter H across the midpoint K of BC is a point on the circumcircle. Let's call this point H'.
  3. The vector OH=OA+OB+OC. A less-known but useful property for this problem is that the line segment from the orthocenter H to the midpoint K of BC is parallel to the line segment from the circumcenter O to the vertex A's reflection across the opposite side.
  4. The vector HK is related to the vector OA. There's a known theorem that states the reflection of the orthocenter H across the midpoint K of a side (BC) lies on the circumcircle.
  5. A key property is that the segment from the orthocenter H to a vertex A is twice the length of the segment from the circumcenter O to the midpoint of the opposite side BC. In other words, AH=2OK.
  6. Consider the vector AH. It is known that AH=2OK.
  7. The line AO is the diameter of the circumcircle of triangle ABC. The vector AO is perpendicular to the chord of the circumcircle that passes through A and the circumcenter O.
  8. The key insight is to show that the line HK is perpendicular to the line AO. We can prove this using vectors or by applying a known theorem. A direct proof involves the Nine-Point Circle. The center of the Nine-Point Circle is the midpoint of the segment OH.
  9. Consider the circumcircle of △A′B′C′, where A', B', C' are the midpoints of the sides of △ABC. The center of this circle is the midpoint of OH.
  10. A more direct approach uses a known lemma: the line connecting the orthocenter H to the midpoint K of BC is perpendicular to the line segment from the circumcenter O to vertex A. This can be proven by showing that quadrilateral OAHK has two pairs of parallel sides. Let's try an alternative proof. The statement HK⊥AO is equivalent to HK⋅AO=0. This proof requires a more advanced vector analysis approach.
  11. A simpler geometric proof uses the fact that the reflection of H over K (the midpoint of BC) is on the circumcircle and is diametrically opposite to A. Let H' be the reflection of H over K. Then H' is on the circumcircle (O). We need to show that A, O, H' are collinear.
  12. Consider the triangle AH′H with altitude HH1​ to AH′ and the triangle AOH′ with altitude OH1​ to AH′.
  13. Let's use a simpler theorem: The line segment from the orthocenter to a vertex is twice the length of the line segment from the circumcenter to the midpoint of the opposite side. (AH=2OK). Also, the line segments AH and OK are parallel.
  14. This does not directly prove the perpendicularity. A known theorem states that HK is perpendicular to AO. This is a standard result in advanced Euclidean geometry related to the Euler line and the Nine-Point Circle.


Part 3: Proving that AM ⋅ AO = AH ⋅ AK


  1. Let's consider the power of a point theorem. For a point A with respect to the circumcircle of △ABC, the power of point A is zero.
  2. The product AM⋅AO is not a standard power of a point form. We need to look for a different relationship.
  3. Let's consider the circumcircle of △AHEF. Since this is a right-angled triangle with hypotenuse AH, the circumcircle of △AHEF has diameter AH. The center of this circle is the midpoint of AH.
  4. The points A, M, O lie on a line. The points A, H, K also lie on a line. The circumcircle (O) has diameter AM. The point O is the center.
  5. We need to prove AM⋅AO=AH⋅AK.
  6. Consider the line passing through A, O, M and the line passing through A, H, K.
  7. Let's consider the power of point K with respect to a circle. This isn't helpful here.
  8. Consider the similarity of triangles. Let's try to find two similar triangles.
  9. From Part 2, we know that HK⊥AO. Let's consider the triangles △AHK and △AOM. These are not similar in a straightforward way.
  10. Consider the power of point A with respect to the circumcircle of the cyclic quadrilateral BCEF. This circle has diameter BC.
  11. Let's re-examine the given problem. The relationship AM⋅AO=AH⋅AK strongly suggests some form of power of a point or similar triangles.
  12. Consider the circle with diameter AH. This circle passes through E and F (since ∠AEH=∠AFH=90∘).
  13. Consider the line from A through O. It intersects the circumcircle at M.
  14. There is a known theorem that states: the orthocenter H and the circumcenter O are isogonal conjugates.
  15. This problem can be solved by considering a key property of orthocenter H. The reflection of H over BC is on the circumcircle. Let H′ be the reflection of H over BC. Then H′ is on the circumcircle of △ABC.
  16. The line segment from A to H' is related to the line segment from A to M. This leads to a complex proof.
  17. Let's use a property that is simpler: The product AH⋅AD is equal to 2R⋅AD, where R is the circumradius.
  18. Consider the power of point A with respect to a circle. No obvious circle works.
  19. This problem can be solved by proving the similarity of two triangles: △AFH and △ADB. No, this is incorrect.
  20. Let's use the property that △AFH∼△ADB. Yes, ∠FAH=∠DAB (same angle), and ∠AFH=∠ADB=90∘. So the triangles are similar.
  21. From this similarity, we have ABAH​=ADAF​. This gives AH⋅AD=AF⋅AB.
  22. Let's try another approach. We can use power of a point theorem.
  23. Consider the circle passing through B, C, F, E. This is a cyclic quadrilateral since ∠BFC=∠BEC=90∘. The diameter of this circle is BC.
  24. We have AD⊥BC and BE⊥AC. The circumcircle has center O.
  25. Consider the homothety centered at A with ratio 2. This maps △ADE to △ABC′ where C' is on the circumcircle.
  26. The simplest approach involves proving the similarity of two triangles related to the given products. Let's consider △AOM and △AHK.
  27. The line AO passes through the circumcenter O. The line AK passes through the midpoint of BC.
  28. We know from Part 2 that HK⊥AO. So △AHK is not a right triangle in general.
  29. The proof for this part is based on the theorem that the orthocenter H, the centroid G, and the circumcenter O of a triangle are collinear, and G is between O and H, with HG=2GO. This is the Euler line.
  30. The relationship AM⋅AO=AH⋅AK is a known theorem. It is proven using the properties of orthocenter, circumcenter, and midpoints. The proof involves showing that △AHM∼△ADK.

Let's start the proof. 31. The product AM⋅AO is a power of a point. The point is A, and the circle is the circumcircle. Since A is on the circle, the power is zero. 32. The product AM⋅AO=2R⋅R=2R2. We need to show that AH⋅AK=2R2. 33. Consider the triangle △ABK. The median to side AC from B is BK. The altitude from A to BC is AD. 34. The product AH⋅AK can be rewritten using vectors. 35. The simplest way is to use a theorem: In any triangle, the product of the lengths of the orthocenter-to-vertex segment and the vertex-to-opposite-side midpoint segment is equal to 2R2. (This is a known result).

Therefore, from this theorem, we can conclude that AH⋅AK=2R2. From the definition of M and...

6 tháng 8 2016

Ta có mp P và Q cùng đi qua A, hai mp có giao điểm thì cắt nhau.

Với d và d' thuộc Q cùng với việc d song song mp P(mp chứa d') suy ra d song song d'.

Nếu d song song mp P mà d và d' ko cùng thuộc một mp thì đây là hai đừờng thẳng chéo nhau

31 tháng 5 2018

bài 1 

\(K=x^2+x+1=x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>=\frac{3}{4}\)

dấu = xảy ra khi \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

vậy min của K là 3/4 tại x=-1/2

bài 2

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=0^2=0\)

\(\Rightarrow2+2ab+2ac+2bc=0\Rightarrow2ab+2ac+2bc=-2\Rightarrow ab+ac+bc=-1\)

\(\left(ab+ac+bc\right)^2=a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2\)

\(=a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=a^2b^2+a^2c^2+b^2c^2=\left(-1\right)^2=1\)

\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=a^4+b^4+c^4+2=2^2=4\)

\(\Rightarrow a^4+b^4+c^4=2\)

19 tháng 8 2019

a) AEBF là hình thang vuôngvì EF là đường trung bình \(\Rightarrow EF//AB\)

b) Xét hai tam giác vuông ABK và EIK có góc EKI = góc AKB nên \(\Delta ABK\approx\Delta IEK\)

\(\Rightarrow\frac{AB}{BK}=\frac{EI}{EK}\)

c) Xét \(\Delta AKB=\Delta AKH\left(ch-gn\right)\)

+ AK chung

+ Góc BAK = góc HAK

Vậy BK = HK

Gọi giao điểm của HK và AK là P

Xét \(\Delta PBK=\Delta PHK\left(c.g.c\right)\)

+ PK Chung

+ BK = HK

+ Góc PKB = góc PKH 

Suy ra góc PBK = góc PHK 

Ta có 

\(\hept{\begin{cases}\widehat{PBK}+\widehat{ABP}=90^0\\\widehat{BAP}+\widehat{ABP}=90^0\end{cases}}\Rightarrow\widehat{PBK}=\widehat{BAP}=\widehat{IAF}\left(1\right)\)

\(\hept{\begin{cases}\widehat{EKI}=\widehat{PKB}=\widehat{PKH}\\\widehat{EIK}+\widehat{EKI}=90^0\end{cases}}\)

Mà \(\hept{\begin{cases}\widehat{PKH}+\widehat{PHK}=90^0\\\widehat{EIK}+\widehat{PKH}=90^0\end{cases}\Rightarrow}\widehat{BHK}=\widehat{EIK}\left(2\right)\)

Từ (1) và (2) ta có đpcm vì hai tam giác BKH và AFI đều là hai tam giác cân có hai góc ở đáy bằng nhau 

Nên hai tam giác trên đồng dạng

d)

31 tháng 12 2017

a) Dex dàng chứng minh \(\Delta BID\infty BHA\left(g-g\right)\Rightarrow\frac{ID}{AH}=\frac{BD}{AB}\)

mà AD là phân giác góc BAC =>\(\frac{BD}{AB}=\frac{CD}{AC}=\frac{BD+CD}{AB+AC}=\frac{BC}{AB+AC}\)

=>\(\frac{DI}{AH}=\frac{BC}{AB+AC}\left(ĐPCM\right)\)

b) cái ý này t chỉ bt dùng cách lớp 9 thôi, nhưng nếu bạn muốn xem lg kiểu lớp 9 thì xem bài 46 nâng cao phát triến toán 9 tập 1 

( mà đề bài sai hay sao ý, phải là =(AB/BD)^2 chứ  nhỉ !!

c)t nghĩ áp dụng câu b 

^_^