
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Xét tứ giác AIBG có
AI//BG
AG//BI
Do đó: AIBG là hình bình hành
=>BG=AI

Bài 2
∆ADE có:
AD = AE (gt)
⇒ ∆ADE cân tại A
⇒ ∠ADE = (180⁰ - ∠DAE) : 2 = (180⁰ - ∠BAC) : 2 (1)
∆ABC cân tại A (gt)
⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (2)
Từ (1) và (2) suy ra ∠ADE = ∠ABC
Mà ∠ADE và ∠ABC là hai góc đồng vị
⇒ DE // BC
∆ABC cân tại A (gt)
⇒ ∠ABC = ∠ACB
⇒ ∠DBC = ∠ECB
Tứ giác BDEC có:
DE // BC (cmt)
⇒ BDEC là hình thang
Mà ∠DBC = ∠ECB (cmt)
⇒ BDEC là hình thang cân
Bài 3
a) ABC cân tại A (gt)
AB = AC và ABC = ACB
Xét hai tam giác vuông: ABD và ACE có:
AB = AC (cmt)
A chung
ABD = ACE (cạnh huyền - góc nhọn)
AD = AE
b) ∆ADE có:
AD = AE (gt)
⇒ ∆ADE cân tại A
⇒ ∠AED = (180⁰ - ∠EAD) : 2 = (180⁰ - ∠BAC) : 2 (1)
∆ABC cân tại A (gt)
⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (2)
Từ (1) và (2) suy ra ∠AED = ∠ABC
Mà ∠AED và ∠ABC là hai góc đồng vị
⇒ DE // BC
∆ABC cân tại A (gt)
⇒ ∠ABC = ∠ACB
⇒ ∠EBC = ∠DCB
Tứ giác BEDC có:
DE // BC (cmt)
⇒ BEDC là hình thang
Mà ∠EBC = ∠DCB (cmt)
⇒ BEDC là hình thang cân

1: \(\frac{1-a\cdot\sqrt{a}}{1-\sqrt{a}}=\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)^{}}{1-\sqrt{a}}=1+\sqrt{a}+a\)
2: \(\frac{\sqrt{x+3}+\sqrt{x-3}}{\sqrt{x+3}-\sqrt{x-3}}=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}{\left(\sqrt{x+3}-\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}\)
\(=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)^2}{x+3-\left(x-3\right)}=\frac{x+3+x-3+2\sqrt{\left(x+3\right)\left(x-3\right)}}{6}\)
\(=\frac{2x+2\sqrt{x^2-9}}{6}=\frac{x+\sqrt{x^2-9}}{3}\)
4: \(\frac{3}{2\sqrt{9x}}=\frac{3}{2\cdot3\sqrt{x}}=\frac{1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}\)
5: \(\frac{1}{2\sqrt{x}}=\frac{1\cdot\sqrt{x}}{2\sqrt{x}\cdot\sqrt{x}}=\frac{\sqrt{x}}{2x}\)
7: \(\frac{\sqrt{a^3}+a}{\sqrt{a}-1}=\frac{a\cdot\sqrt{a}+a}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a\left(a+2\sqrt{a}+1\right)}{a-1}=\frac{a^2+2a\cdot\sqrt{a}+a}{a-1}\)
8: \(\frac{2}{\sqrt{a}+\sqrt{2b}}=\frac{2\cdot\left(\sqrt{a}-\sqrt{2b}\right)}{\left(\sqrt{a}+\sqrt{2b}\right)\left(\sqrt{a}-\sqrt{2b}\right)}=\frac{2\sqrt{a}-2\sqrt{2b}}{a-2b}\)
10: \(\frac{25}{\sqrt{a}-\sqrt{b}}=\frac{25\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{25\sqrt{a}+25\sqrt{b}}{a-b}\)
11: \(-\frac{ab}{\sqrt{a}-\sqrt{b}}=-\frac{ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{-ab\cdot\sqrt{a}-ab\cdot\sqrt{b}}{a-b}\)
12567876
a: Xét ΔMNP và ΔKPN có
\(\hat{MNP}=\hat{KPN}\) (hai góc so le trong, MN//PK)
NP chung
\(\hat{MPN}=\hat{KNP}\) (hai góc so le trong, MP//NK)
Do đó: ΔMNP=ΔKPN
=>MN=KP; MP=KN
ta có: MP=KN
MP=NQ
Do đó: NK=NQ
=>ΔNKQ cân tại N
b: Ta có: ΔNKQ cân tại N
=>\(\hat{NKQ}=\hat{NQK}\)
mà \(\hat{NKQ}=\hat{MPQ}\) (hai góc đồng vị, MP//NK)
nên \(\hat{MPQ}=\hat{NQP}\)
Xét ΔMQP và ΔNPQ có
MP=NQ
\(\hat{MPQ}=\hat{NQP}\)
PQ chung
Do đó: ΔMQP=ΔNPQ
c: ΔMQP=ΔNPQ
=>\(\hat{MQP}=\hat{NPQ}\)
=>MNPQ là hình thang cân