
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=\frac{12}{1.5}+\frac{12}{5.9}+\frac{12}{9.13}+.............+\frac{12}{101.105}\)
\(=3.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+............+\frac{4}{101.105}\right)\)
\(=3\left(1-\frac{1}{105}\right)\)
\(=3.\frac{104}{105}=\frac{312}{105}\)

a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne=\)
Nên x + 1 = 0 => x = -1
b) \(\frac{x+1}{14}+\frac{x+2}{13}=\frac{x+3}{12}+\frac{x+4}{11}\)
\(\Leftrightarrow\frac{x+1}{14}+1+\frac{x+2}{13}+1=\frac{x+3}{12}+1+\frac{x+4}{11}+1\)
\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}=\frac{x+15}{12}+\frac{x+15}{11}\)
\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}-\frac{x+15}{12}-\frac{x+15}{11}=0\)
\(\Leftrightarrow\left(x+15\right)\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)=0\)
Vì \(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\ne0\)
Nên x +15 = 0 => x = -15
a,\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)-\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)=0\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}>\frac{1}{13};\frac{1}{11}>\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}>\frac{1}{13}+\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}>\frac{1}{13}+\frac{1}{14}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}>0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
b, Bạn cộng thêm 1 vào \(\frac{x+1}{14};\frac{x+1}{13};\frac{x+1}{12};\frac{x+1}{11}\)Mội bên phân số 1 đơn vị rồi áp dụng như bài 1

***********************************************************
a) Ta có: \(\dfrac{x+12}{10-x}=-\dfrac{x-10+22}{x-10}=-1+\dfrac{22}{x-10}\)
Vì \(\left(x+12\right)⋮\left(10-x\right)\) nên \(22⋮\left(x-10\right)\)
Do đó ta có bảng:
x-10 | -22 | -11 | -2 | -1 | 1 | 2 | 22 |
x | -12 | -1 | 8 | 9 | 11 | 12 | 32 |
Vậy \(x\in\left\{-12;-1;8;9;11;12;32\right\}\)
c) \(\left(x-3\right)⋮\left(x+1\right)\)
=> \(\left(x-3\right)-\left(x+1\right)⋮\left(x+1\right)\)
=> \(\left(x-3-x-1\right)⋮\left(x+1\right)\)
=>\(-4⋮\left(x+1\right)\)
=> x+1\(\in\) ư(-4)= \(\left\{\pm1,\pm2,\pm4\right\}\)
ta có bảng sau
x+1 | -4 | -2 | -1 | 1 | 2 | 4 |
x | -5 | -3 | -2 | 0 | 1 | 3 |
vậy x\(\in\left\{-5,-3;-2;0;1;3\right\}\)


a) \(12⋮x+1\)
\(\Rightarrow x+1\inƯ\left(12\right)\)
mà \(Ư\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
\(\Rightarrow\hept{\begin{cases}x+1=1;x+1=4\\x+1=2;x+1=6\\x+1=3;x+1=12\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0;x=3\\x=1;x=5\\x=2;x=11\end{cases}}\)
b) \(x+5⋮x+1\)
\(\Rightarrow x+4+1⋮x+1\)
\(\Rightarrow\left(x+1\right)+4⋮x+1\)
\(\Rightarrow4⋮x+1\)
\(\Rightarrow x+1\inƯ\left(4\right)\)
mà \(Ư\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\hept{\begin{cases}x+1=1\\x+1=2\\x+1=4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=1\\x=3\end{cases}}\)

d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x^2+12=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x\in\varnothing\end{cases}}\)
e) \(\left|x-7\right|=6\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=6\\x-7=-6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=13\\x=1\end{cases}}\)
i) \(120\left(1-x\right)\left(8+x\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(8+x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}1-x=0\\8+x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)
j) \(\left|x-5\right|+12=24\)
\(\Leftrightarrow\left|x-5\right|=12\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=12\\x-5=-12\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=17\\x=-7\end{cases}}\)
Bài giải
d, \(\left(x-3\right)\left(x^2+12\right)=0\)
Mà \(x^2+12\ne0\) nên \(x-3=0\)
\(\Rightarrow\text{ }x=3\)
e, \(\left|x-7\right|=6\)
\(\Rightarrow\orbr{\begin{cases}x-7=-6\\x-7=6\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=13\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-1\text{ ; }13\right\}\)
i, \(120\cdot\left(1-x\right)\cdot\left(8+x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}1-x=0\\8+x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{1\text{ ; }-8\right\}\)
j, \(\left|x-5\right|+12=24\)
\(\left|x-5\right|=24-12\)
\(\left|x-5\right|=12\)
\(\Rightarrow\orbr{\begin{cases}x-5=-12\\x-5=12\end{cases}}\Rightarrow\orbr{\begin{cases}x=-7\\x=17\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-7\text{ ; }17\right\}\)

a, 12 chia hết chi x+1 suy ra x+1 thuộc 1,-1.2,-2,3,-3,4,-4,12,-12
vậy x thuộc 0,-2,1,-3,2,-4,3,-5,11,-13
b,x+5 bằng x+1+4 mà x+1 đã chia hết cho x+1 thì để x+5 cx chia hết cho x+1 thì 3 phải chia hết cho x+1 suy ra x+1 thuoocj1,-1,3,-3
vậy x thuộc 0,-2,2,-4
ko viết đc dấu nên thông cảm nha

Lời giải:
a) \(12\vdots x+1\Rightarrow x+1\in \text{Ư}(12)\)
Mà \(x\in\mathbb{N}\Rightarrow x+1\in\mathbb{N}\). Do đó \(x+1\in \left\{1; 2;3;4;6;12\right\}\)
\(\Rightarrow x\in \left\{0; 1;2;3;5;11\right\}\)
b)
\(x+5\vdots x+1\)
\(\Rightarrow (x+1)+4\vdots x+1\)
\(\Rightarrow 4\vdots x+1\Rightarrow x+1\in \text{Ư}(4)\). Mà \(x\in \mathbb{N}\Rightarrow x+1\in \mathbb{N}\)
Do đó: \(x+1\in \left\{1;2;4\right\}\)
\(\Rightarrow x\in \left\{0; 1;3\right\}\)
x = 3
Ta có 12= 3x4 => x=3