K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 giờ trước (9:19)

Đặ \(\hat{A}=a;\hat{B}=b;\hat{C}=c\)

Theo đề, ta có: 5a=3b=15c

=>\(\frac{5a}{15}=\frac{3b}{15}=\frac{15c}{15}\)

=>\(\frac{a}{3}=\frac{b}{5}=\frac{c}{1}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{1}=\frac{a+b+c}{3+5+1}=\frac{180}{9}=20\)

=>\(\begin{cases}a=20\cdot3=60\\ b=20\cdot5=100\\ c=20\cdot1=20\end{cases}\)

=>\(\hat{A}=60^0;\hat{B}=100^0;\hat{C}=20^0\)

AD là phân giác của góc BAC

=>\(\hat{BAD}=\hat{CAD}=\frac12\cdot\hat{BAC}=30^0\)

Xét ΔADC có \(\hat{ADB}\) là góc ngoài tại đỉnh D

nên \(\hat{ADB}=\hat{DAC}+\hat{DCA}=30^0+20^0=50^0\)

15 giờ trước (12:57)

Tam giác \(A B C\) có các góc \(\hat{A} , \hat{B} , \hat{C}\) thỏa mãn:

\(5 \hat{A} = 3 \hat{B} = 15 \hat{C} .\)

1 . Tính số đo các góc của tam giác \(A B C\).

Gọi giá trị chung bằng \(k\). Ta có:

\(5 \hat{A} = 3 \hat{B} = 15 \hat{C} = k .\)

Suy ra:

\(\hat{A} = \frac{k}{5} , \hat{B} = \frac{k}{3} , \hat{C} = \frac{k}{15} .\)

Vì tổng ba góc của tam giác bằng \(180^{\circ}\):

\(\frac{k}{5} + \frac{k}{3} + \frac{k}{15} = 180.\)

Quy đồng mẫu số 15:

\(\frac{3 k}{15} + \frac{5 k}{15} + \frac{k}{15} = 180.\) \(\frac{9 k}{15} = 180.\) \(\frac{3 k}{5} = 180 \Rightarrow k = 180 \times \frac{5}{3} = 300.\)

Từ đó:

\(\hat{A} = \frac{300}{5} = 60^{\circ} ,\) \(\hat{B} = \frac{300}{3} = 100^{\circ} ,\) \(\hat{C} = \frac{300}{15} = 20^{\circ} .\)

Vậy \(\hat{A}=60^{\circ};\hat{B}=100^{\circ};\hat{C}=20^{\circ}.\)

2.Tính \(\hat{A D B}\).

  • Tia phân giác \(A D\) chia góc \(\hat{A} = 60^{\circ}\) thành hai phần bằng nhau:

\(\hat{B A D} = \hat{D A C} = 30^{\circ} .\)

  • Xét tam giác \(A D B\):

\(\hat{B A D} = 30^{\circ} , \hat{B} = 100^{\circ} .\)

Suy ra góc còn lại:

\(\hat{A D B} = 180^{\circ} - \left(\right. 30^{\circ} + 100^{\circ} \left.\right) = 50^{\circ} .\)


Vậy \(\hat{A}=60^{\circ};\hat{B}=100^{\circ};\hat{C}=20^{\circ}.\)

CHO MÌNH XIN 1 TICK NHA\(\hat{A D B}=50^{\circ}\)

19 giờ trước (9:14)

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

\(\hat{B}-\hat{C}=\alpha\)

nên \(\hat{B}=\frac{90^0+\alpha}{2}\)

AD là phân giác của góc BAC

=>\(\hat{BAD}=\hat{CAD}=\frac{90^0}{2}=45^0\)

Ta có: \(\hat{BAH}+\hat{B}=90^0\)

=>\(\hat{BAH}=90^0-\hat{B}=90^0-\frac{90^0+\alpha}{2}=\frac{90^0-\alpha}{2}=45^0-\frac12\cdot\alpha\)

\(\hat{BAH}<\hat{BAD}\)

nên tia AH nằm giữa hai tia AB và AD

=>\(\hat{BAH}+\hat{HAD}=\hat{BAD}\)

=>\(\hat{HAD}=45^0-\left(45^0-\frac12\cdot\alpha\right)=\frac12\cdot\alpha\)

19 giờ trước (9:04)

Búng luôn rồi !

19 giờ trước (9:11)

Ta có: ΔABC vuông tại A

=>\(\hat{ABC}+\hat{ACB}=90^0\)

=>\(\hat{ACB}=90^0-65^0=25^0\)

ΔHAC vuông tại H

=>\(\hat{HAC}+\hat{HCA}=90^0\)

=>\(\hat{HAC}=90^0-25^0=65^0\)

HD là phân giác của góc AHC

=>\(\hat{AHD}=\hat{CHD}=\frac12\cdot\hat{AHC}=45^0\)

Xét ΔCDH có \(\hat{ADH}\) là góc ngoài tại đỉnh D

nên \(\hat{ADH}=\hat{DCH}+\hat{DHC}=25^0+45^0=70^0\)

16 tháng 11 2021

Ok bạn. Mình không biết đúng hay saiundefined

16 tháng 11 2021

undefinedđây nhabn

4 tháng 4 2017

Khó quá

17 tháng 7 2017

A B C H E I M N x

a) Vẽ tia đối của BC là Bx. Gọi giao điểm của BI và CE là M. CE giao AB tại N. 

\(\Delta\)ABC cân tại A. H là trung điểm của BC => AH là đường cao của \(\Delta\)ABC => AH\(⊥\)BC.

 Ta có: ^ABH+^EBx=1800-^ABE=900 (1)

\(\Delta\)AHB vuông tại H => ^ABH+^BAH=900 (2)

Từ (1) và (2) => ^EBx=^BAH => 1800-^EBx=1800-^BAH => ^EBC=^BAI

Xét \(\Delta\)ABI và \(\Delta\)BEC:

AB=BE

^BAI=^EBC        => \(\Delta\)ABI=\(\Delta\)BEC (c.g.c) (đpcm)

AI=BC

=> ^BEC=^ABI (2 góc tương ứng) hay ^BEN=^NBM.

\(\Delta\)EBN vuông tại B => ^BEN+^BNE=900. Thay ^BEN=^NBM, ta được:

^NBM+^BNE=900 hay ^NBM+^BNM=900. Xét \(\Delta\)BMN có:

^NBM+^BNM=900 => ^BMN=900 => BI\(⊥\)CE tại M (đpcm).

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

Vì CD và CE là hai tia phân giác của hai góc kề bù

nên CD⊥CE

=>ΔDCE vuông tại C

Xét ΔADC có \(\hat{BDC}\) là góc ngoài tại đỉnh D

nên \(\hat{BDC}=\hat{DAC}+\hat{DCA}=\hat{BAC}+\frac12\cdot\hat{ACB}\)

\(=\hat{BAC}+\frac12\left(180^0-\hat{BAC}-\hat{ABC}\right)=90^0+\frac12\cdot\hat{BAC}-\frac12\cdot\hat{ABC}\)

Xét ΔDCE vuông tại C có \(\hat{CDE}+\hat{CED}=90^0\)

=>\(\hat{CED}=90^0-\left(90^0+\frac12\cdot\hat{BAC}-\frac12\cdot\hat{ABC}\right)=-\frac12\cdot\hat{BAC}+\frac12\cdot\hat{ABC}\)

16 tháng 8

Kết quả:

\(\angle C E D = \frac{\mid A - B \mid}{2} .\)

Giải nhanh: Gọi \(C = 180^{\circ} - A - B\). Vì \(C E\) là tia phân giác góc ngoài tại \(C\), nên nó tạo với \(C A\) một góc

\(\hat{\left(\right. C E , C A \left.\right)} = 90^{\circ} - \frac{C}{2} .\)

Qua \(E\) kẻ đường thẳng song song với \(C A\); đường này tạo với \(A B\) một góc bằng \(A\). Do đó góc giữa \(C E\)\(A B\) (chính là \(\angle C E D\)) bằng

\(\mid \textrm{ } A - \left(\right. 90^{\circ} - \frac{C}{2} \left.\right) \mid .\)

Thay \(C = 180^{\circ} - A - B\) vào, ta có \(90^{\circ} - \frac{C}{2} = \frac{A + B}{2}\). Suy ra

\(\angle C E D = \mid A - \frac{A + B}{2} \mid = \frac{\mid A - B \mid}{2} .\)

(Với quy ước lấy góc nhọn tại \(E\); nếu \(A \geq B\) thì \(\angle C E D = \frac{A - B}{2}\), còn nếu \(A < B\) thì \(\angle C E D = \frac{B - A}{2}\).)