Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔABC vuông tại A
=>\(\hat{B}+\hat{C}=90^0\)
mà \(\hat{B}-\hat{C}=\alpha\)
nên \(\hat{B}=\frac{90^0+\alpha}{2}\)
AD là phân giác của góc BAC
=>\(\hat{BAD}=\hat{CAD}=\frac{90^0}{2}=45^0\)
Ta có: \(\hat{BAH}+\hat{B}=90^0\)
=>\(\hat{BAH}=90^0-\hat{B}=90^0-\frac{90^0+\alpha}{2}=\frac{90^0-\alpha}{2}=45^0-\frac12\cdot\alpha\)
Vì \(\hat{BAH}<\hat{BAD}\)
nên tia AH nằm giữa hai tia AB và AD
=>\(\hat{BAH}+\hat{HAD}=\hat{BAD}\)
=>\(\hat{HAD}=45^0-\left(45^0-\frac12\cdot\alpha\right)=\frac12\cdot\alpha\)

Ta có: ΔABC vuông tại A
=>\(\hat{ABC}+\hat{ACB}=90^0\)
=>\(\hat{ACB}=90^0-65^0=25^0\)
ΔHAC vuông tại H
=>\(\hat{HAC}+\hat{HCA}=90^0\)
=>\(\hat{HAC}=90^0-25^0=65^0\)
HD là phân giác của góc AHC
=>\(\hat{AHD}=\hat{CHD}=\frac12\cdot\hat{AHC}=45^0\)
Xét ΔCDH có \(\hat{ADH}\) là góc ngoài tại đỉnh D
nên \(\hat{ADH}=\hat{DCH}+\hat{DHC}=25^0+45^0=70^0\)

A B C H E I M N x
a) Vẽ tia đối của BC là Bx. Gọi giao điểm của BI và CE là M. CE giao AB tại N.
\(\Delta\)ABC cân tại A. H là trung điểm của BC => AH là đường cao của \(\Delta\)ABC => AH\(⊥\)BC.
Ta có: ^ABH+^EBx=1800-^ABE=900 (1)
\(\Delta\)AHB vuông tại H => ^ABH+^BAH=900 (2)
Từ (1) và (2) => ^EBx=^BAH => 1800-^EBx=1800-^BAH => ^EBC=^BAI
Xét \(\Delta\)ABI và \(\Delta\)BEC:
AB=BE
^BAI=^EBC => \(\Delta\)ABI=\(\Delta\)BEC (c.g.c) (đpcm)
AI=BC
=> ^BEC=^ABI (2 góc tương ứng) hay ^BEN=^NBM.
\(\Delta\)EBN vuông tại B => ^BEN+^BNE=900. Thay ^BEN=^NBM, ta được:
^NBM+^BNE=900 hay ^NBM+^BNM=900. Xét \(\Delta\)BMN có:
^NBM+^BNM=900 => ^BMN=900 => BI\(⊥\)CE tại M (đpcm).

Bài làm
a) Xét tam ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )
hay \(\widehat{ACB}+60^0=90^0\)
=> \(\widehat{ACB}=90^0-60^0=30^0\)
b) Xét tam giác ABE và tam giác DBE có:
\(\widehat{BAE}=\widehat{BDE}=90^0\)
Cạnh huyền: BE chung
Cạnh góc vuông: AB = BD ( gt )
=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )
=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )
=> BI là tia phân giác của góc BAC
Mà I thược BE
=> BE là tia phân giác của góc BAC
Gọi I là giao điểm BE và AD
Xét tam giác AIB và tam giác DIB có:
AB = BD ( gt )
\(\widehat{ABE}=\widehat{DBE}\)( cmt )
BI chung
=> Tam giác AIB = tam giác DIB ( c.g.c )
=> AI = ID (1)
=> \(\widehat{BIA}=\widehat{BID}\)
Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )
Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)
=> BI vuông góc với AD tại I (2)
Từ (1) và (2) => BI là đường trung trực của đoạn AD
Mà I thược BE
=> BE là đường trung trực của đoạn AD ( đpcm )
c) Vì tam giác ABE = tam giác DBE ( cmt )
=> AE = ED ( hai cạnh tương ứng )
Xét tam giác AEF và tam giác DEC có:
\(\widehat{EAF}=\widehat{EDC}=90^0\)
AE = ED ( cmt )
\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )
=> Tam giác AEF = tam giác DEC ( g.c.g )
=> AF = DC
Ta có: AF + AB = BF
DC + BD = BC
Mà AF = DC ( cmt )
AB = BD ( gt )
=> BF = BC
=> Tam giác BFC cân tại B
=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\) (3)
Vì tam giác BAD cân tại B ( cmt )
=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\) (4)
Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)
Mà Hai góc này ở vị trí đồng vị
=> AD // FC
d) Xét tam giác ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau ) (5)
Xét tam giác DEC vuông tại D có:
\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau ) (6)
Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)
Ta lại có:
\(\widehat{ABC}>\widehat{EBC}\)
=> AC > EC
Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)
=> EC = 1/2 AC.
=> E là trung điểm AC
Mà EC = EF ( do tam giác AEF = tam giác EDC )
=> EF = 1/2AC
=> AE = EC = EF
Và AE = ED ( cmt )
=> ED = EC
Mà EC = 1/2AC ( cmt )
=> ED = 1/2AC
=> 2ED = AC ( đpcm )
Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??

Vì CD và CE là hai tia phân giác của hai góc kề bù
nên CD⊥CE
=>ΔDCE vuông tại C
Xét ΔADC có \(\hat{BDC}\) là góc ngoài tại đỉnh D
nên \(\hat{BDC}=\hat{DAC}+\hat{DCA}=\hat{BAC}+\frac12\cdot\hat{ACB}\)
\(=\hat{BAC}+\frac12\left(180^0-\hat{BAC}-\hat{ABC}\right)=90^0+\frac12\cdot\hat{BAC}-\frac12\cdot\hat{ABC}\)
Xét ΔDCE vuông tại C có \(\hat{CDE}+\hat{CED}=90^0\)
=>\(\hat{CED}=90^0-\left(90^0+\frac12\cdot\hat{BAC}-\frac12\cdot\hat{ABC}\right)=-\frac12\cdot\hat{BAC}+\frac12\cdot\hat{ABC}\)
Kết quả:
\(\angle C E D = \frac{\mid A - B \mid}{2} .\)Giải nhanh: Gọi \(C = 180^{\circ} - A - B\). Vì \(C E\) là tia phân giác góc ngoài tại \(C\), nên nó tạo với \(C A\) một góc
\(\hat{\left(\right. C E , C A \left.\right)} = 90^{\circ} - \frac{C}{2} .\)Qua \(E\) kẻ đường thẳng song song với \(C A\); đường này tạo với \(A B\) một góc bằng \(A\). Do đó góc giữa \(C E\) và \(A B\) (chính là \(\angle C E D\)) bằng
\(\mid \textrm{ } A - \left(\right. 90^{\circ} - \frac{C}{2} \left.\right) \mid .\)Thay \(C = 180^{\circ} - A - B\) vào, ta có \(90^{\circ} - \frac{C}{2} = \frac{A + B}{2}\). Suy ra
\(\angle C E D = \mid A - \frac{A + B}{2} \mid = \frac{\mid A - B \mid}{2} .\)(Với quy ước lấy góc nhọn tại \(E\); nếu \(A \geq B\) thì \(\angle C E D = \frac{A - B}{2}\), còn nếu \(A < B\) thì \(\angle C E D = \frac{B - A}{2}\).)
Đặ \(\hat{A}=a;\hat{B}=b;\hat{C}=c\)
Theo đề, ta có: 5a=3b=15c
=>\(\frac{5a}{15}=\frac{3b}{15}=\frac{15c}{15}\)
=>\(\frac{a}{3}=\frac{b}{5}=\frac{c}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{1}=\frac{a+b+c}{3+5+1}=\frac{180}{9}=20\)
=>\(\begin{cases}a=20\cdot3=60\\ b=20\cdot5=100\\ c=20\cdot1=20\end{cases}\)
=>\(\hat{A}=60^0;\hat{B}=100^0;\hat{C}=20^0\)
AD là phân giác của góc BAC
=>\(\hat{BAD}=\hat{CAD}=\frac12\cdot\hat{BAC}=30^0\)
Xét ΔADC có \(\hat{ADB}\) là góc ngoài tại đỉnh D
nên \(\hat{ADB}=\hat{DAC}+\hat{DCA}=30^0+20^0=50^0\)
Tam giác \(A B C\) có các góc \(\hat{A} , \hat{B} , \hat{C}\) thỏa mãn:
\(5 \hat{A} = 3 \hat{B} = 15 \hat{C} .\)
1 . Tính số đo các góc của tam giác \(A B C\).
Gọi giá trị chung bằng \(k\). Ta có:
\(5 \hat{A} = 3 \hat{B} = 15 \hat{C} = k .\)
Suy ra:
\(\hat{A} = \frac{k}{5} , \hat{B} = \frac{k}{3} , \hat{C} = \frac{k}{15} .\)
Vì tổng ba góc của tam giác bằng \(180^{\circ}\):
\(\frac{k}{5} + \frac{k}{3} + \frac{k}{15} = 180.\)
Quy đồng mẫu số 15:
\(\frac{3 k}{15} + \frac{5 k}{15} + \frac{k}{15} = 180.\) \(\frac{9 k}{15} = 180.\) \(\frac{3 k}{5} = 180 \Rightarrow k = 180 \times \frac{5}{3} = 300.\)
Từ đó:
\(\hat{A} = \frac{300}{5} = 60^{\circ} ,\) \(\hat{B} = \frac{300}{3} = 100^{\circ} ,\) \(\hat{C} = \frac{300}{15} = 20^{\circ} .\)
Vậy \(\hat{A}=60^{\circ};\hat{B}=100^{\circ};\hat{C}=20^{\circ}.\)
2.Tính \(\hat{A D B}\).
\(\hat{B A D} = \hat{D A C} = 30^{\circ} .\)
\(\hat{B A D} = 30^{\circ} , \hat{B} = 100^{\circ} .\)
Suy ra góc còn lại:
\(\hat{A D B} = 180^{\circ} - \left(\right. 30^{\circ} + 100^{\circ} \left.\right) = 50^{\circ} .\)
Vậy \(\hat{A}=60^{\circ};\hat{B}=100^{\circ};\hat{C}=20^{\circ}.\)
CHO MÌNH XIN 1 TICK NHA\(\hat{A D B}=50^{\circ}\)