
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(M=\frac{-2x}{3}+3x\left(\frac{x}{6}-\frac{-2}{9}-\frac{7}{5}\right)-\frac{5x}{2}\left(\frac{x}{5}-\frac{4}{5}\right)\)
\(M=\frac{-2x}{3}+3x\left(\frac{x}{6}+\frac{2}{9}-\frac{7}{5}\right)-\frac{5x}{2}.\frac{x-4}{5}\)
\(M=\frac{-2x}{3}+3x\left(\frac{15x+20-126}{90}\right)-\frac{5x^2-20x}{10}\)
\(M=\frac{-2x}{3}+3x.\frac{15x-106}{90}-\frac{5.\left(x^2-4x\right)}{10}\)
\(M=\frac{-2x}{3}+\frac{45x^2-318x}{90}-\frac{x^2-4x}{2}\)


\(a,\left(3x+5\right)^2+\left(3x-5\right)^2-\left(3x+2\right)\left(3x-2\right)=9x^2+30x+25+9x^2-30x+25-9x^2+4=9x^2+54\)
\(b,BT=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x=x^3-16x^2+25x\)
\(c,BT=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-z-x-y\right)^2=z^2\)

\(M=\frac{-2x}{3}+3x\left(\frac{x}{6}-\frac{-2}{9}-\frac{7}{5}\right)-\frac{5x}{2}\left(\frac{x}{5}-\frac{4}{5}\right)\)
\(M=\frac{-2x}{3}+3x\left[\frac{x}{6}-\left(-\frac{2}{9}\right)-\frac{7}{5}\right]-\frac{5x}{4}\left(\frac{x}{5}-\frac{4}{5}\right)\)
\(M=\frac{-2x}{3}+3x\left(\frac{x}{6}+\frac{2}{9}-\frac{7}{5}\right)-\frac{5x}{2}\left(\frac{x}{5}-\frac{4}{5}\right)\)
\(M=-\frac{2x}{3}+3x\left(\frac{x}{6}-\frac{53}{45}\right)-\frac{5x}{2}.\frac{x-4}{5}\)
\(M=-\frac{2x}{3}+3x\left(\frac{x}{6}-\frac{53}{45}\right)-\frac{5x\left(x-4\right)}{10}\)
\(M=-\frac{2x}{3}+3x\left(\frac{x}{6}-\frac{53}{45}\right)-\frac{x\left(x-4\right)}{2}\)
\(M=-\frac{2x}{3}+\frac{x^2}{2}-\frac{53x}{15}-\frac{x\left(x-4\right)}{2}\)
\(M=\left(-\frac{2x}{3}-\frac{53x}{15}\right)+\frac{x^2}{2}-\frac{x\left(x-4\right)}{2}\)
\(M=-\frac{21x}{5}+\frac{x^2}{2}-\frac{x\left(x-4\right)}{2}\)
\(M=\frac{-2.21x+5x^2-5x\left(x-4\right)}{10}\)
\(M=\frac{-42x+5x^2-5x\left(x-4\right)}{10}\)
\(M=\frac{-x\left[42-5x+5\left(x-4\right)\right]}{10}\)
\(M=\frac{-x\left(42-5x+5x-20\right)}{10}\)
\(M=\frac{-x\left(42-20\right)}{10}\)
\(M=\frac{-x.22}{10}\)
\(M=-\frac{22x}{10}\)
\(M=-\frac{11x}{5}\)

(x+0.5)+(x-0,2)-(-0,3) với đk x/0,3
(x+x)-(0,5-0,2+0,3)
2x-0,6=0
x=0,3
vậy ko đúng với đk
Sửa đề: \(E=\left|x+0,5\right|+\left|x-0,2\right|-\left|x-0,3\right|\)
TH1: x<-0,5
=>x+0,5<0; x-0,2<0; x-0,3<0
=>E=-x-0,5-x+0,2-(-x+0,3)
=-2x-0,3+x-0,3
=-x-0,6
TH2: -0,5<=x<0,2
=>x+0,5>=0; x-0,2<0; x-0,3<0
=>E=x+0,5+0,2-x-(0,3-x)
=0,7-0,3+x
=x+0,4
TH3: 0,2<=x<0,3
=>x+0,5>0; x-0,2>=0; x-0,3<0
=>E=x+0,5+x-0,2-(0,3-x)
=2x+0,3-0,3+x
=3x

Ta xét các trường hợp:
Trường hợp 1: \(x < \frac{1}{4}\)
- Khi đó \(x - 3 < 0 \Rightarrow \mid x - 3 \mid = 3 - x\).
- Đồng thời \(4 x - 1 < 0 \Rightarrow \mid 4 x - 1 \mid = 1 - 4 x\).
Suy ra:
\(A = 2 \left(\right. 3 - x \left.\right) - \left(\right. 1 - 4 x \left.\right) = 5 + 2 x .\)
Trường hợp 2: \(\frac{1}{4} \leq x < 3\)
- Khi đó \(x - 3 < 0 \Rightarrow \mid x - 3 \mid = 3 - x\).
- Đồng thời \(4 x - 1 \geq 0 \Rightarrow \mid 4 x - 1 \mid = 4 x - 1\).
Suy ra:
\(A = 2 \left(\right. 3 - x \left.\right) - \left(\right. 4 x - 1 \left.\right) = 7 - 6 x .\)
Trường hợp 3: \(x \geq 3\)
- Khi đó \(x - 3 \geq 0 \Rightarrow \mid x - 3 \mid = x - 3\).
- Đồng thời \(4 x - 1 \geq 0 \Rightarrow \mid 4 x - 1 \mid = 4 x - 1\).
Suy ra:
\(A = 2 \left(\right. x - 3 \left.\right) - \left(\right. 4 x - 1 \left.\right) = - 2 x - 5.\)
Kết luận:
\(A = \left{\right. 5 + 2 x & \text{n} \overset{ˊ}{\hat{\text{e}}} \text{u}\&\text{nbsp}; x < \frac{1}{4} , \\ 7 - 6 x & \text{n} \overset{ˊ}{\hat{\text{e}}} \text{u}\&\text{nbsp}; \frac{1}{4} \leq x < 3 , \\ - 2 x - 5 & \text{n} \overset{ˊ}{\hat{\text{e}}} \text{u}\&\text{nbsp}; x \geq 3.\)
Đặt A=3|x-5|-|3x+2|
TH1: \(x<-\frac23\)
=>3x+2<0; x-5<0
=>\(A=3\left(5-x\right)-\left(-3x-2\right)\)
=15-3x+3x+2
=17
TH2: \(-\frac23\le x<5\)
=>3x+2>=0; x-5<0
=>\(A=3\left(5-x\right)-\left(3x+2\right)\)
=15-3x-3x-2
=-6x+13
TH3: x>=5
=>3x+2>0; x-5>=0
=>A=3(x-5)-(3x+2)
=3x-15-3x-2
=-17
phá ngoặc ra nhân 3 nhân (5+2)=21 nhé