
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Dễ ợt, bạn làm như sau nhé :
= \(=\left(me^x\frac{2a^x}{lna}+\frac{1}{ln3}\left(xlnx-x\right)+cos2x+\frac{3^{ }}{4^{ }}sin4x+C\right)\)

Bài 1: Thực hiện phép tính
a)136 - (2 . 52 + 23 . 3)
= 136 - (104 + 69)
= 136 - 173
= -37
b) (-243) + (-12) + (+243) + (-38) + (10)
= [(-243) + (+243)] + (-12) + (-38) + (10)
= 0 + (-40)
= -40
Bài 2 : Tìm x ∈ N, biết:
a) 6 . (x-81) = 54
⇒ x - 81 = 54 : 6
⇒ x - 81 = 9
x = 81 + 9
x = 90
Vậy : x = 90
b) 18 - (x-4) = 32
⇒ x - 4 = 18 - 32
⇒ x - 4 = -14
x = -14 + 4
x = -10

\(\begin{cases}x^2+2\left|xy\right|-5x+m=0\left(1\right)\\x-y=\sin\left|x\right|-\sin\left|y\right|\left(2\right)\end{cases}\)
Biến đổi (2) về dạng : \(x-\sin\left|x\right|=y-\sin\left|y\right|\)
\(\Leftrightarrow f\left(x\right)=f\left(y\right)\) (*)
Xét hàm số \(f\left(t\right)=t-\sin\left|t\right|\)
- Miền xác định D=R
- Đạo hàm \(f'\left(t\right)=\begin{cases}1-\cot\left(t>0\right)\\1+\cot\left(t<0\right)\end{cases}\)
Suy ra \(f'\left(t\right)\ge0\) với mọi \(t\ne0\Leftrightarrow\) Hàm số đồng biến
Từ (*) \(\Leftrightarrow x=y\) Thay vào (1) ta có : \(3x^2-5x+m=0\) (**)
Để hệ có hai nghiệm với tung độ trái dấu \(\Leftrightarrow\) phương trình (**) có 2 nghiệm trái dấu \(\Leftrightarrow P<0\Leftrightarrow m<0\)

1) bạn dùng dấu U
điều kiện \(\begin{cases}m\ne0,m>-\frac{1}{4}\\m< 1\end{cases}\)
muons dễ nhìn thì vẽ trục số: 0 -1/4 1 x
=> điều kiện x \(\in\left(-\frac{1}{4};1\right)\backslash\left\{0\right\}\)
Bài nào bn