
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có : \(\left(5x-3\right)^2-\frac{1^2}{64}=0\)
\(\Leftrightarrow\left(5x-3\right)^2=\frac{1}{64}\)
\(\Leftrightarrow\left(5x-3\right)^2=\left(\frac{1}{8}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=\frac{1}{8}\\5x-3=-\frac{1}{8}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=\frac{1}{8}+3\\5x=-\frac{1}{8}+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=\frac{25}{8}\\5x=\frac{23}{8}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{25}{8}.\frac{1}{5}\\x=\frac{23}{8}.\frac{1}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{8}\\x=\frac{23}{40}\end{cases}}\)
b) 3x - 7.(5x-1) = 6 - 2.(4-3x)
=> 3x - 35x + 7 = 6 - 8 + 6x
=> 3x - 35x - 6x = 6-8 -7
-38x = -9
x = 9/38

\(\left(3x-2\right)^3+64=0\)
\(\left(3x-2\right)^3=0-64\)
\(\left(3x-2\right)^3=-64\)
\(\left(3x-2\right)^3=\left(-4\right)^3\)
\(3x-2=-4\)
\(3x=\left(-4\right)+2\)
\(3x=-2\)
\(x=\left(-2\right):3\)
\(x=\frac{-2}{3}\)
( 3x - 2 )\(^3\)+ 64 = 0
( 3x - 2 )\(^3\)= -64
( 3x - 2 )\(^3\)= -4\(^3\)
3x - 2 = -4
3x = -4 + 2
3x = -2
x = \(\frac{-2}{3}\)

a, \(\left(1+3x\right)^3=64\Leftrightarrow\left(1+3x\right)^3=4^3\)
\(\Leftrightarrow1+3x=4\Leftrightarrow3x=3\Rightarrow x=1\in Z\)
Vậy x = 1
b, \(\left(11-4x\right)^3=343\Leftrightarrow\left(11-4x\right)^3=7^3\)
\(\Leftrightarrow11-4x=7\Rightarrow4x=11-7\Rightarrow4x=4\Rightarrow x=1\in Z\)
Vậy x = 1
1.
( 1 + 3x )3 = 64
( 1 + 3x )3 = 43
( 1 + 3x ) = 4
3x = 4 - 1
3x = 3
x = 3 : 3
x = 1
2.
( 11 - 4x )3 = 343
( 11 - 4x )3 = 73
( 11 - 4x ) = 7
4x = 11 - 7
4x = 4
x = 4 : 4
x = 1

a, Ta có : \(64^x+4^{3x+2}=17.64\)
=> \(64^x+64^x.16=17.64\)
=> \(17.64^x=17.64\)
=> \(64^x=64\)
=> \(x=1\)
Vậy phương trình có tập nghiệm là \(S=\left\{1\right\}\)
b, Ta có : \(123-2\left(\left|2x-3\right|\right)=41\)
=> \(\left|2x-3\right|=41\)
TH1 : \(2x-3\ge0\left(x\ge\frac{3}{2}\right)\)
=> \(\left|2x-3\right|=2x-3=41\)
=> \(x=22\) ( TM )
TH2 : \(2x-3< 0\left(x< \frac{3}{2}\right)\)
=> \(\left|2x-3\right|=3-2x=41\)
=> \(x=-19\left(TM\right)\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{22,-19\right\}\)
a) \(64^x+4^{3x+2}=17\cdot64\)
\(\Leftrightarrow4^{3x}+4^{3x}.4^2=17.64\)
\(\Leftrightarrow4^{3x}\left(1+4^2\right)=17.64\)
\(\Leftrightarrow4^{3x}=64=4^3\)
\(\Leftrightarrow x=1\)
b) \(123-2\left|2x-3\right|=41\)
\(\Leftrightarrow\left|2x-3\right|=41\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=41\\2x-3=-41\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=22\\x=-19\end{matrix}\right.\)

\(\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)
\(=\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{8^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)
\(=\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...0...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)
\(=0\)
Vậy...

\(A=2^0+2^1+2^2+2^3+...+2^{2009}\)
\(=>2A=2^1+2^2+2^3+...+2^{2009}+2^{2010}\)
\(=>2A-A=\left(2^1+2^2+2^3+...+2^{2009}+2^{2010}\right)-\left(2^0+2^1+2^2+2^3+...+2^{2009}\right)\)
\(\left(3x+1\right)^2=64\)
\(\left[\begin{array}{l}3x+1=8\\ 3x+1=-8\end{array}\right.\Rightarrow\left[\begin{array}{l}3x=7\\ 3x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac73\\ x=-3\end{array}\right.\)
vậy \(x\in\left\lbrace\frac73;-3\right\rbrace\)
\((3x+1)^2=64\) \(=(3x+1^{)^2}=8^2\)
→ 3x + 1 = 8
= 3x = 8 - 1
= 3x = 7
= x = 7 : 3
= \(\frac73\)