
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


bài 1:
\(A=-2xy+\frac32xy^2+\frac12xy^2+xy-3\)
\(=\left(\frac32+\frac12\right)xy^2+\left(-2xy+xy\right)-3\)
\(=2xy^2-xy-3\) (bậc 3)
\(B=-xy^2z+2x^2yz-xyz-3xy^2z-2x^2yz\)
\(=\left(2x^2yz-2x^2yz\right)+\left(-xy^2z-3xy^2z\right)-xyz\)
\(=-4xy^2z-xyz\) (bậc 4)
\(C=4x^2y^3+x^4-2x^2y^3+5x^4-2x^2y^3+3\)
\(=\left(4-2-2\right)x^2y^3+\left(1+5\right)x^4+3\)
\(=6x^4+3\) (bậc 4)
\(D=\frac34xy^2-2xy+3-\frac12xy^2-4xy-7\)
\(=\left(\frac34-\frac12\right)xy^2+\left(-2xy-4xy\right)+\left(3-7\right)\)
\(=\frac14xy^2-6xy-4\) (bậc 3)
\(E=-\frac34x^2y-5xy+\frac12x^2y+10xy-x^2y+xy\)
\(=\left(-\frac34+\frac12-1\right)x^2y+\left(-5+10+1\right)xy\)
\(=-\frac54x^2y+6xy\) (bậc 3)
\(F=3xy^2z-xy^2z-xyz+2xy^2z-3xyz-5xy^2z\)
\(=\left(3-1+2-5\right)xy^2z+\left(-1-3\right)xyz\)
\(=-xy^2z-4xyz\) (bậc 4)
bài 2; 1. thay x=y=-1 vào A ta được:
\(A=6\left(-1\right)\left(-1\right)^2+7\left(-1\right)\left(-1\right)^3+8\left(-1\right)^2\left(-1\right)^3=-7\)
2. \(B=x^6+2x^2y^3-x^2+xy-x^2y^3-x^6+x^5=x^2y^3+xy\)
thay x=-2; y=-1 vào B ta được:
\(4\cdot\left(-1\right)+2=-2\)
3. \(C=7xy^2-4xy+2xy^2-xy-9xy^2+5xy-\frac12x^2y^3=-\frac12x^2y^3\)
thay x = 15; y = -3 vào C ta được:
\(C=-\frac12\cdot15^2\cdot\left(-3\right)^3=3037,5\)
4. \(D=\frac23x^2y+3x^2y-x^2y-1=\frac83x^2y-1\)
thay x = -3; y = 1 vào D ta được:
\(\frac83\cdot\left(-3\right)^2\cdot1-1=23\)
bài 4:
1. \(A+B=\left(x+2y\right)+\left(x-2y\right)=2x\)
\(A-B=\left(x+2y\right)-\left(x-2y\right)=4y\)
2. \(B+A=\left(x^3+2xy^2-2\right)+\left(2x^2y-x^3-3xy^2+1\right)\)
\(=2x^2y+\left(2xy^2-xy^2\right)+\left(-2+1\right)\)
\(=2x^2y+xy^2-1\)
\(B-A=\left(x^3+2xy^2-2\right)-\left(2x^2y-x^3-xy^2+1\right)\)
\(=x^3+2xy^2-2-2x^2y+x^3+xy^2-1\)
\(=2x^3-2x^2y+3xy^2-3\)
3. \(A-B=\left(\frac12x^2y+xy^3-\frac52x^3y^2+x^3\right)-\left(\frac72x^3y^2-\frac12x^2y+xy^3\right)\)
\(=\frac12x^2y+\frac12x^2y+\left(xy^3-xy^3\right)+\left(-\frac52-\frac72\right)x^3y^2+x^3\)
\(=x^2y-6x^3y^2+x^3\)
\(B-A=-\left(A-B\right)=-\left(x^2y-6x^3y^2+x^3\right)=6x^3y^2-x^2y-x^3\)

a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

a; ABCD là hình thang cân
=>\(\hat{A}=\hat{B};\hat{C}=\hat{D}\)
\(\hat{A}+\hat{B}=\frac12\left(\hat{C}+\hat{D}\right)\)
=>\(2\cdot\hat{B}=\frac12\left(\hat{C}+\hat{C}\right)=\frac12\cdot2\cdot\hat{C}=\hat{C}\)
Ta có: AB//CD
=>\(\hat{B}+\hat{C}=180^0\)
=>\(\hat{B}+2\cdot\hat{B}=180^0\)
=>\(3\cdot\hat{B}=180^0\)
=>\(\hat{B}=60^0\)
\(\hat{C}=2\cdot\hat{B}=2\cdot60^0=120^0\)
\(\hat{D}=\hat{C}=120^0\)
\(\hat{A}=\hat{B}=60^0\)
b: ΔCAB vuông tại C
=>\(\hat{CAB}+\hat{CBA}=90^0\)
=>\(\hat{CAB}=90^0-60^0=30^0\)
Ta có: tia AC nằm giữa hai tia AD và AB
=>\(\hat{DAC}+\hat{BAC}=\hat{DAB}\)
=>\(\hat{DAC}=60^0-30^0=30^0\)
ta có: \(\hat{DAC}=\hat{BAC}\left(=30^0\right)\)
=>AC là phân giác của góc BAD
c: ta có: DC//AB
=>\(\hat{DCA}=\hat{CAB}\) (hai góc so le trong)
=>\(\hat{DCA}=30^0=\hat{DAC}\)
=>ΔDAC cân tại D
=>DC=DA
=>AD=a
Ta có: ABCD là hình thang cân
=>AD=BC
=>BC=a
Xét ΔCAB vuông tại C có \(\sin BAC=\frac{BC}{AB}\)
=>\(\frac{a}{AB}=\sin30=\frac12\)
=>AB=2a
ΔCAB vuông tại C
=>\(CA^2+CB^2=AB^2\)
=>\(CA^2=\left(2a\right)^2-a^2=3a^2\)
=>\(CA=a\sqrt3\)
Diện tích tam giác DAC là:
\(S_{DAC}=\frac12\cdot DA\cdot DC\cdot\sin ADC=\frac12\cdot a\cdot a\cdot\sin120=\frac{a^2\sqrt3}{4}\)
Diện tích tam giác ACB là:
\(S_{ACB}=\frac12\cdot CA\cdot CB=\frac12\cdot a\sqrt3\cdot a=\frac{a^2\sqrt3}{2}\)
Diện tích tam giác ABCD là:
\(S_{ABCD}=S_{DAC}+S_{CAB}=\frac{a^2\sqrt3}{4}+\frac{a^2\sqrt3}{2}=\frac{3a^2\sqrt3}{4}\)

thực hiện phép tính chia
\(a.\left(8x^4y^2-2x^3y^2+3x^2y^3\right):\left(2xy^2\right)\) (điều kiện: \(x;y\ne0)\)
\(=4x^3-x^2+\frac32xy\)
\(b.\left(-6x^3+5x^2y+4xy^2\right):\left(\frac14x\right)\) (điều kiện: \(x\ne0)\)
\(=-24x^2+20xy+16y^2\)
\(c.\left\lbrack7\cdot\left(y-x\right)^5+6\left(y-x\right)^4-2\left(x-y\right)^3+\left(y-x\right)^2\right\rbrack:\left(x-y\right)^2\) (điều kiện: \(x\ne y)\)
\(=7\left(y-x\right)^3+6\left(y-x\right)^2+2\left(y-x\right)+1\)
\(d.M\cdot\frac13xy^2=5x^4y^3-3x^3y^2+12x^2y\)
\(\Rightarrow M=\left(5x^4y^3-3x^3y^2+12x^2y\right):\left(\frac13xy^2\right)\)
\(M=15x^3y-9x^2+\frac{36x}{y}\)
\(e.\left(-6x^5y^3\right):M=2x^2y\)
\(\Rightarrow M=\left(-6x^5y^3\right):\left(2x^2y\right)\)
\(M=-3x^3y^2\)
\(\left(21x^7y^6-15x^6y^4+9x^4y^3\right):M\) (*)
thay M vào (*) ta được:
\(\left(21x^7y^6-15x^6y^4+9x^4y^3\right):\left(-3x^3y^2\right)\)
\(=-7x^4y^4+5x^3y^2-3xy\)

\(\frac{9x+5}{6\cdot\left(x+3\right)^2}-\frac{5x-7}{6\left(x+3\right)^2}\)
\(=\frac{9x+5-5x+7}{6\left(x+3\right)^2}\)
\(=\frac{4x+12}{6\left(x+3\right)^2}=\frac{4\left(x+3\right)}{6\left(x+3\right)^2}=\frac{2}{3\left(x+3\right)}\)

a) Số tiền Linh dùng mua bút bi:
50000 - 20000 = 30000 (đồng)
Giá tiền mỗi bút chì sau khi giảm:
x - 1000 (đồng)
Phân thức biểu thị số bút chì Linh mua được:
Phân thức biểu thị số bút bi Linh mua được:
b) Với x = 3000, số bút bi Linh mua được:
30000 : 3000 = 10 (bút)
Hình ảnh bạn gửi hơi mờ, khó có thể nhìn thấy và trả lời được, theo cảm nhận riêng mình