Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI


a; ABCD là hình thang cân
=>\(\hat{A}=\hat{B};\hat{C}=\hat{D}\)
\(\hat{A}+\hat{B}=\frac12\left(\hat{C}+\hat{D}\right)\)
=>\(2\cdot\hat{B}=\frac12\left(\hat{C}+\hat{C}\right)=\frac12\cdot2\cdot\hat{C}=\hat{C}\)
Ta có: AB//CD
=>\(\hat{B}+\hat{C}=180^0\)
=>\(\hat{B}+2\cdot\hat{B}=180^0\)
=>\(3\cdot\hat{B}=180^0\)
=>\(\hat{B}=60^0\)
\(\hat{C}=2\cdot\hat{B}=2\cdot60^0=120^0\)
\(\hat{D}=\hat{C}=120^0\)
\(\hat{A}=\hat{B}=60^0\)
b: ΔCAB vuông tại C
=>\(\hat{CAB}+\hat{CBA}=90^0\)
=>\(\hat{CAB}=90^0-60^0=30^0\)
Ta có: tia AC nằm giữa hai tia AD và AB
=>\(\hat{DAC}+\hat{BAC}=\hat{DAB}\)
=>\(\hat{DAC}=60^0-30^0=30^0\)
ta có: \(\hat{DAC}=\hat{BAC}\left(=30^0\right)\)
=>AC là phân giác của góc BAD
c: ta có: DC//AB
=>\(\hat{DCA}=\hat{CAB}\) (hai góc so le trong)
=>\(\hat{DCA}=30^0=\hat{DAC}\)
=>ΔDAC cân tại D
=>DC=DA
=>AD=a
Ta có: ABCD là hình thang cân
=>AD=BC
=>BC=a
Xét ΔCAB vuông tại C có \(\sin BAC=\frac{BC}{AB}\)
=>\(\frac{a}{AB}=\sin30=\frac12\)
=>AB=2a
ΔCAB vuông tại C
=>\(CA^2+CB^2=AB^2\)
=>\(CA^2=\left(2a\right)^2-a^2=3a^2\)
=>\(CA=a\sqrt3\)
Diện tích tam giác DAC là:
\(S_{DAC}=\frac12\cdot DA\cdot DC\cdot\sin ADC=\frac12\cdot a\cdot a\cdot\sin120=\frac{a^2\sqrt3}{4}\)
Diện tích tam giác ACB là:
\(S_{ACB}=\frac12\cdot CA\cdot CB=\frac12\cdot a\sqrt3\cdot a=\frac{a^2\sqrt3}{2}\)
Diện tích tam giác ABCD là:
\(S_{ABCD}=S_{DAC}+S_{CAB}=\frac{a^2\sqrt3}{4}+\frac{a^2\sqrt3}{2}=\frac{3a^2\sqrt3}{4}\)


bài 13:
a: Xét tứ giác AMHN có \(\hat{AMH}=\hat{ANH}=\hat{MAN}=90^0\)
nên AMHN là hình chữ nhật
b: Xét ΔAMH vuông tại M và ΔAMD vuông tại M có
AM chung
MH=MD
Do đó: ΔAMH=ΔAMD
=>\(\hat{MAH}=\hat{MAD}\)
=>AM là phân giác của góc HAD
=>\(\hat{HAD}=2\cdot\hat{HAM}\)
Xét ΔANH vuông tại N và ΔANE vuông tại N có
AN chung
NH=NE
Do đó: ΔANH=ΔANE
=>\(\hat{NAH}=\hat{NAE}\)
=>AN là phân giác của góc HAE
=>\(\hat{HAE}=2\cdot\hat{HAN}\)
Ta có: \(\hat{DAE}=\hat{DAH}+\hat{EAH}\)
\(=2\left(\hat{HAN}+\hat{HAM}\right)=2\cdot\hat{NAM}=180^0\)
=>D,A,E thẳng hàng
c: ΔAHM=ΔADM
=>AH=AD
ΔANH=ΔANE
=>AH=AE
Xét ΔAHB và ΔADB có
AH=AD
\(\hat{HAB}=\hat{DAB}\)
AB chung
Do đó: ΔAHB=ΔADB
=>\(\hat{AHB}=\hat{ADB}\)
=>\(\hat{ADB}=90^0\)
=>BD⊥AD
=>BD⊥ DE(2)
Xét ΔAHC và ΔAEC có
AH=AE
\(\hat{HAC}=\hat{EAC}\)
AC chung
Do đó: ΔAHC=ΔAEC
=>\(\hat{AHC}=\hat{AEC}\)
=>\(\hat{AEC}=90^0\)
=>CE⊥ DE(1)
Từ (1),(2) suy ra BD//CE
=>BDEC là hình thang
d: Xét ΔHED có
N,M lần lượt là trung điểm của HE,HD
=>NM là đường trung bình của ΔHED
=>ED=2MN=MN+AH
Bài 12:
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
Hình bình hành ABDC có \(\hat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: ABDC là hình chữ nhật
=>AB//DC và AB=DC
AB//DC
=>DC//BE
ta có: AB=DC
AB=BE
Do đó: DC=BE
Xét tứ giác BCDE có
BE//DC
BE=DC
Do đó: BCDE là hình bình hành
c: DK=2BK
DK+BK=DB
Do đó: DB=2BK+BK=3BK
=>\(\frac{DK}{DB}=\frac23\)
Xét ΔADE có
DB là đường trung tuyến
\(DK=\frac23DB\)
Do đó: K là trọng tâm của ΔADE
Xét ΔADE có
K là trọng tâm
M là trung điểm của AD
Do đó: E,K,M thẳng hàng
=>EK,AD,BC đồng quy

Bài 2:
a: ĐKXĐ: x∉{2;-2}
b: \(A=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2x-4}{x^2-4}\)
\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2}{x+2}=\frac{3x}{x-2}\)
c: Thay x=-5 vào A, ta được:
\(A=\frac{3\cdot\left(-5\right)}{-5-2}=\frac{-15}{-7}=\frac{15}{7}\)
d: Để A nguyên thì 3x⋮x-2
=>3x-6+6⋮x-2
=>6⋮x-2
=>x-2∈{1;-1;2;-2;3;-3;6-6}
=>x∈{1;2;4;0;5;-1;8;-4}
Kết hợp ĐKXĐ, ta được: x∈{1;4;0;5;-1;8;-4}
Bài 1:
a: \(A=x^2+10x+25\)
\(=x^2+2\cdot x\cdot5+5^2=\left(x+5\right)^2\)
b: \(B=x^2-y^2+8x-8y\)
=(x-y)(x+y)+8(x-y)
=(x-y)(x+y+8)
c: \(C=x^2+4x-5\)
\(=x^2+5x-x-5\)
=x(x+5)-(x+5)
=(x+5)(x-1)

Olm chào em, nay đang là thứ bảy cuối tuần, đang là ngày nghỉ lễ theo quy định nhà nước. Sang thứ hai Olm mới làm việc, em nhé. Chỉ có cô Hoài là trực 24/24 thôi
cảm ơn bạn mik bt gửi ảnh rồi nhưng của mik kiểu toàn bị ẩn thôi
Bạn nào có khó khăn gì thì cứ thắc mắc với mình nhé!