Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta thấy \(10^{50}>10^{50}-3\)
\(\Rightarrow B=\frac{10^{50}}{10^{50}-3}>\frac{10^{50}+2}{10^{50}-3+2}=\frac{10^{50}+2}{10^{50}-1}=A\)
Vậy \(A< B\)

D = \(\frac{2^{2004}+1}{2^{2003}+1}\)=\(\frac{2^{2003}+2}{2^{2004}+2}\)
C = \(\frac{2^{2005}+3}{2^{2006}+3}\)= \(\frac{2^{2005}+2}{2^{2006}+2}\)
Vậy C>D
mình chuyển 1 hạng tử của 3 từ bên d sang c nên ta được pt như trên

a) Ta có :
N = 2018 + 2019/2019 + 2020
= 2018/2019 + 2020 + 2019/2019 + 2020
Ta thấy : 2018/2019 + 2020 < 2018/2019 ( Vì 2019 + 2020 > 2019 )
2019/2019 + 2020 < 2019/2020 ( Vì 2019 + 2020 > 2020 )
=> 2018/2019 + 2020 + 2019/2019 + 2020 < 2018/2019 + 2019/2020
=> M > N
b) Mk ko bt làm !!
c) Ta có :
19/31 > 1/2
17/35 < 1/2
=> 19/31 > 17/35
d) Ta có :
3535/3434 = 1 + 1/3534
2323/2322 = 1 + 1/2322
Ta thấy :
1/3534 < 1/2322 ( Vì 3534 > 2322 )
=> 1 + 1/3534 < 1 + 1/2322
=> 3535/3534 < 2323/2322
Hok tốt !

1)
Ta có :
2300 = ( 23 )100 = 8100
3200 = ( 32 )100 = 9100
vì 8100 < 9100 nên 2300 < 3200
2)
Ta có :
523 = 522 . 5
vì 522 . 5 < 522 . 6 nên 523 < 6 . 522

Câu hỏi của Lê Tiến Cường - Toán lớp 6 - Học toán với OnlineMath
\(A=\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{10101}{10100}=\frac{2+1}{2}+\frac{6+1}{6}+\frac{12+1}{12}+...+\frac{10100+1}{10100}\)
\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{6}\right)+\left(1+\frac{1}{12}\right)+....+\left(1+\frac{1}{10100}\right)\)
\(A=\left(1+\frac{1}{1\times2}\right)+\left(1+\frac{1}{2\times3}\right)+\left(1+\frac{1}{3\times4}\right)+...+\left(1+\frac{1}{100\times101}\right)\)
\(A=\left(1+1+1+....+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{100\times101}\right)\)
\(A=100+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{100}-\frac{1}{101}\right)\)
\(A=100+1-\frac{1}{101}=101-\frac{1}{101}< 101=B\)
\(\Rightarrow A< B\)
So easy

Ta có:
\(\frac{12}{35}>\frac{12}{36}\Rightarrow\frac{12}{35}>\frac{1}{3}\)
\(\frac{20}{61}< \frac{20}{60}\Rightarrow\frac{20}{61}< \frac{1}{3}\)
Vì \(\frac{12}{35}>\frac{1}{3};\frac{20}{61}< \frac{1}{3}\)nên \(\frac{12}{35}>\frac{20}{61}\)
So sánh hai phân số \(\frac{18}{91}\) và \(\frac{23}{144}\) theo cách tính bằng số trung gian
mình đang cần gấp ai giải nhanh , chính sát nhất mình k cho
còn 1 câu nữa giải luôn đi

a, Áp dụng bđt cosi ta có :
a/b + b/a >= \(2\sqrt{\frac{a}{b}.\frac{b}{a}}\)= 2
b, Tương tự câu (a) ta có : b/c + c/b >= 2 ; c/a + a/c >= 2
=> S - a/c + b/c + b/a + c/a + c/b + a/b = (a/b + b/a) + (b/c + c/b) + (c/a + a/c) >= 2+2+2 = 6
Tk mk nha

B1 :
Nếu X = 0 => (-5).X = 0
Nếu X < 0 => (-5).X > 0
Nếu X > 0 => (-5).X < 0
Tk mk nha
cái đầu tiên điền > rồi cái thứ 2 (-68) .(-47) = 68.47
cái 7.(-13) < 7 .13
(-173).(-186) > 173 . 185

Ta có:
A = \(\frac{2}{60.63}+\frac{2}{63.66}+...+\frac{2}{117.120}+\frac{2}{2016}\)
\(=2.\left(\frac{1}{60.63}+\frac{1}{63.66}+...+\frac{1}{117.120}\right)+\frac{2}{2016}\)
\(=2.\frac{1}{3}\left(\frac{3}{60.63}+\frac{3}{63.66}+...+\frac{3}{117.120}\right)+\frac{2}{2016}\)
\(=\frac{2}{3}.\left(\frac{1}{60}-\frac{1}{63}+\frac{1}{63}-\frac{1}{66}+...+\frac{1}{117}-\frac{1}{120}\right)+\frac{2}{2016}\)
\(=\frac{2}{3}.\left(\frac{1}{60}-\frac{1}{120}\right)+\frac{2}{2016}\)
\(=\frac{2}{3}.\frac{1}{120}+\frac{2}{2016}\)
\(=\frac{1}{180}+\frac{2}{2016}\)
B = \(\frac{5}{40.44}+\frac{5}{44.48}+...+\frac{5}{76.80}+\frac{5}{2016}\)
\(=\frac{5}{4}.\left(\frac{4}{40.44}+\frac{4}{44.48}+...+\frac{4}{76.80}\right)+\frac{5}{2016}\)
\(=\frac{5}{4}.\left(\frac{1}{40}-\frac{1}{44}+\frac{1}{44}-\frac{1}{48}+...+\frac{1}{76}-\frac{1}{80}\right)+\frac{5}{2016}\)
\(=\frac{5}{4}.\left(\frac{1}{40}-\frac{1}{80}\right)+\frac{5}{2016}\)
\(=\frac{5}{4}.\frac{1}{80}+\frac{5}{2016}\)
\(=\frac{1}{64}+\frac{5}{2016}\)
Vì \(\frac{1}{64}>\frac{1}{180}\) và \(\frac{5}{2016}>\frac{2}{2016}\) nên B > A
Vậy B > A
C < D nha bạn!
like cho mik đi!
C=269=260⋅29=(26)10⋅512=6410⋅512𝐶=269=260⋅29=(26)10⋅512=6410⋅512.
D=531=530⋅51=(53)10⋅5=12510⋅5𝐷=531=530⋅51=(53)10⋅5=12510⋅5. Bước 55: So sánh các cơ số và số mũ So sánh 6410⋅5126410⋅512và 12510⋅512510⋅5.
Rõ ràng 6410<125106410<12510.
Tuy nhiên, 512512lớn hơn 55.
Để so sánh chính xác hơn, một phương pháp khác sẽ được áp dụng. Bước 66: Sử dụng logarit hoặc ước lượng Một cách để so sánh là ước lượng giá trị của chúng.
210=1024≈103210=1024≈103.
C=269=26⋅10+9=(210)6⋅29≈(103)6⋅512=1018⋅512=5.12⋅1020𝐶=269=26⋅10+9=(210)6⋅29≈(103)6⋅512=1018⋅512=5.12⋅1020.
D=531=53⋅10+1=(53)10⋅51=12510⋅5𝐷=531=53⋅10+1=(53)10⋅51=12510⋅5.
12510=(53)10=53012510=(53)10=530.
D=531𝐷=531.
So sánh 269269và 531531.
Lấy logarit cơ số 1010của cả hai số:
log10(269)=69⋅log10(2)≈69⋅0.301=20.769log10(269)=69⋅log10(2)≈69⋅0.301=20.769.
log10(531)=31⋅log10(5)=31⋅log10(102)=31⋅(log10(10)−log10(2))=31⋅(1−0.301)=31⋅0.699=21.669log10(531)=31⋅log10(5)=31⋅log10(102)=31⋅(log10(10)−log10(2))=31⋅(1−0.301)=31⋅0.699=21.669.
Vì 20.769<21.66920.769<21.669, suy ra 269<531269<531. Kết luận cuối cùng C<D𝐶<𝐷.