K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 giờ trước (14:54)

Đáp án:

Giải thích các bước giải:

ab3=b+c6=ca7Áp dụng dãy tỉ số bằng nhauab3=b+c6=ca7=ab+bcca3+6−7=0Haya=b=c=dP=c+8(a+b)−2022Mà a=b=c=dP=a+8(a+a)−2022⇒P=a+8.2a−2022=17a−2022




S
9 giờ trước (15:01)

đặt \(\frac{a-b}{3}=\frac{b+c}{6}=\frac{c-a}{7}=t\)

\(\Rightarrow\begin{cases}a-b=3t\\ b+c=6t\\ c-a=7t\end{cases}\Rightarrow\begin{cases}a=3t+b\\ b+10t+b=6t\Rightarrow b=-2t\\ c=a+7t=3t+b+7t=10t+b\end{cases}\)

\(\begin{cases}a=3t+b=3t-2t=t\\ c=b+10t=-2t+10t=8t\\ b=-2t\end{cases}\)

\(P=c+8\left(a+b\right)-2020=8t+8\cdot\left(t-2t\right)-2020\)

\(=8t-8t-2020=0-2020=-2020\)

1 tháng 9 2020

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a-b}{3}=\frac{b+c}{6}=\frac{c-a}{7}=\frac{a-b+b+c+c-a}{3+6+7}=\frac{2c}{16}=\frac{c}{8}\)

mà \(\frac{b+c}{6}=\frac{c-a}{7}=\frac{\left(b+c\right)-\left(c-a\right)}{6-7}=\frac{b+c-c+a}{-1}=-\left(a+b\right)\)

\(\Rightarrow\frac{c}{8}=-\left(a+b\right)\)\(\Rightarrow c=-8\left(a+b\right)\)

Ta có: \(P=c+8\left(a+b\right)-2020=-8\left(a+b\right)+8\left(a+b\right)-2020=-2020\)

1 tháng 9 2020

Ta có :\(\frac{a-b}{3}=\frac{b+c}{6}=\frac{c-a}{7}=\frac{a-b+b+c-c+a}{3+6-7}=\frac{2a}{2}=a\)(1)(dãy tỉ số bằng nhau)

\(\frac{a-b}{3}=\frac{b+c}{6}=\frac{c-a}{7}=\frac{a-b-b-c+c-a}{3-6+7}=\frac{-2b}{4}=-\frac{b}{2}\)(2)(dãy tỉ số bằng nhau)

\(\frac{a-b}{3}=\frac{b+c}{6}=\frac{c-a}{7}=\frac{a-b+b+c+c-a}{3+6+7}=\frac{2c}{16}=\frac{c}{8}\)(3)(dãy tỉ số bằng nhau)

Từ (1)(2)(3) => \(\frac{a}{1}=\frac{-b}{2}=\frac{c}{8}\)

Đựt \(\frac{a}{1}=\frac{-b}{2}=\frac{c}{8}=k\Rightarrow\hept{\begin{cases}a=k\\b=-2k\\c=8k\end{cases}}\)

Khi đó P = c + 8(a + b) - 2020 = 8k + 8(k - 2k) - 2020 = 8k - 8k - 2020 = -2020

Vậy P = -2020

12 tháng 11 2019

Ko khó đâu bn ơi

Đặt a/b=c/d=k

=> a=bk và c=dk

Xong thay vào (a^2020-b^2020)/(a^2020+b^2020)=(b^2020.k^2020-b^2020)/(b^2020.k^2020+b^2020)

= (k^2020-1)/(k^2020+1)

Tiếp tục thay vào (c^2020-d^2020)/(c^2020+d^2020)=(d^2020.k^2020-d^2020)/(d^2020.k^2020+d^2020)

= (k^2020-1)/(k^2020+1)

=> đpcm.

1) cho a,b,c là 3 số thực khác 0 thỏa mãn a+b-c/c=b+c-a/a=c+a-b/bhãy tính B= (1+b/a)(1+a/c)(1+c/b)2) CHo 2 số a, b thỏ mã a+3b= 0. tính giá trị M = \(\frac{2a+b}{a-b}=\frac{2a-b}{a+2b}\)3) Cmr b= \(2x^2-12xy+5y^2\) và c= \(-x-4y^2+12xy\) ko cùng nhận giá trị âm4) CHo p/s : d= \(\frac{n^2+3n-21}{2-n}\)a) tính d biết \(n^2-3n=0\)b) Tìm tất cả giá trị của n để d nguyên5)Tìm các số nguyên m thỏa mãn (5-m)(2m-1)>06)Tìm x,y...
Đọc tiếp

1) cho a,b,c là 3 số thực khác 0 thỏa mãn a+b-c/c=b+c-a/a=c+a-b/b
hãy tính B= (1+b/a)(1+a/c)(1+c/b)
2) CHo 2 số a, b thỏ mã a+3b= 0. tính giá trị M = \(\frac{2a+b}{a-b}=\frac{2a-b}{a+2b}\)
3) Cmr b= \(2x^2-12xy+5y^2\) và c= \(-x-4y^2+12xy\) ko cùng nhận giá trị âm
4) CHo p/s : d= \(\frac{n^2+3n-21}{2-n}\)
a) tính d biết \(n^2-3n=0\)
b) Tìm tất cả giá trị của n để d nguyên
5)Tìm các số nguyên m thỏa mãn (5-m)(2m-1)>0
6)Tìm x,y để \(\left(x^3-4x\right)^2+3x^2.|y-3|=0\)
7)Cho \(\frac{a}{b}=\frac{c}{d}\)cmr \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
8)\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}\) và 10x-3y-2z=-4
9)Cho tỷ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Cmr (a+2c)(b+d)=(a+c)(b+2d)
10)Cho x,y,z là cá số khác 0 và \(x^2=yz,y^2=xz,z^2=xy\). Cmr x=y=z
11)Tìm x biết \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)

0
19 tháng 2 2020

\(\text{Ta có: }a^2\left(b+c\right)-b^2\left(a+c\right)=2020\)
\(\Leftrightarrow a^2b+a^2c-b^2a-b^2c=0\)
\(\Leftrightarrow\left(a^2b-b^2a\right)+\left(a^2c-b^2c\right)=0\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a+b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left[ab+c\left(a+b\right)\right]=0\)
\(\Leftrightarrow\left(a-b\right)\left(ab+ac+bc\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\ab+ac+bc=0\end{cases}}\)
\(\text{Xét phần }ab+ac+bc=0,\text{ta có}\)
\(ab+ac=-bc\)
\(\Leftrightarrow a\left(b+c\right)=-bc\)
\(\Leftrightarrow a^2\left(b+c\right)=-abc\)
\(\Leftrightarrow2020=-abc\)
\(\Leftrightarrow abc=-2020\)
\(\text{Lại có: }ac+bc=-ab\)
\(\Leftrightarrow c\left(a+b\right)=-ab\)
\(\Leftrightarrow c^2\left(a+b\right)=-abc\)
\(\Leftrightarrow A=2020\)

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=2018k\\b=2019k\\c=2020k\end{matrix}\right.\)

\(\Rightarrow\left(a-c\right)^3=\left(2018k-2020k\right)^3=\left(-2k\right)^3=-8k^3\) (1)

\(8\left(a-b\right)^2.\left(b-c\right)=8\left(2018k-2019k\right)^2.\left(2019k-2020k\right)=8k^2\left(-k\right)=8\left(-k\right)^3=-8k^3\left(2\right)\)

Từ (1) và (2) ⇒ \(\left(a-c\right)^3=8\left(a-b\right)^2.\left(b-c\right)\left(đpcm\right)\)

30 tháng 1 2020

mn giúp mk vs

chiều mk nộp rùikhocroikhocroikhocroikhocroi

22 tháng 7 2017

bn lấy máy tính mà tính ý

22 tháng 7 2017

Bài1:

Ta có:

a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)

b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)

c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)

Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)

Bài 2:

Không có đề bài à bạn?

Bài 3:

a)\(\sqrt{x}-1=4\)

\(\Rightarrow\sqrt{x}=5\)

\(\Rightarrow x=\sqrt{25}\)

\(\Rightarrow x=5\)

b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)

Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)

\(\Rightarrow\left(x-1\right)^2=16\)

\(\Rightarrow\left(x-1\right)^2=4^2\)

\(\Rightarrow x-1=4\)

\(\Rightarrow x=5\)