K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

nhìn lé cả con mắt mà ko nhìn đc chữ

16 tháng 8

ko nhìn đc gì luôn á

a: Xét ΔBDE vuông tại E và ΔBCD vuông tại D có

\(\hat{DBE}\) chung

Do đó: ΔBDE~ΔBCD

b: Xét ΔBFD vuông tại F và ΔBDA vuông tại D có

\(\hat{FBD}\) chung

Do đó: ΔBFD~ΔBDA

=>\(\frac{BF}{BD}=\frac{BD}{BA}\)

=>\(BD^2=BF\cdot BA\)

c: ΔBDE~ΔBCD

=>\(\frac{BD}{BC}=\frac{BE}{BD}\)

=>\(BD^2=BE\cdot BC\)

=>\(BE\cdot BC=BF\cdot BA\)

=>\(\frac{BE}{BA}=\frac{BF}{BC}\)

Xét ΔBEF và ΔBAC có

\(\frac{BE}{BA}=\frac{BF}{BC}\)

góc EBF chung

Do đó: ΔBEF~ΔBAC

=>\(\hat{BFE}=\hat{BCA}\)


Gọi I là trung điểm của DE
=>I là tâm đường tròn đường kính DE

ĐƯờng trung trực của BC cắt BC,AC,AB lần lượt tại M,D,E

=>MB=MC; EB=EC; DB=DC

MB=MC nên M la trung điểm của BC

ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB

=>ΔMAB cân tại M

=>\(\hat{MAB}=\hat{MBA}\)

ΔAED vuông tại A

mà AI là đường trung tuyến

nên IA=IE

=>ΔIAE cân tại I

=>\(\hat{IAE}=\hat{IEA}\)

\(\hat{IEA}=\hat{MEB}\) (hai góc đối đỉnh)

nên \(\hat{IAE}=\hat{MEB}\)

Ta có: DM là đường trung trực của BC

=>DM⊥BC tại M

Xét tứ giác AEMC có \(\hat{CAE}+\hat{CME}+\hat{ACM}+\hat{AEM}=360^0\)

=>\(\hat{ACM}+\hat{AEM}=360^0-90^0-90^0=180^0\)

\(\hat{AEM}+\hat{BEM}=180^0\) (hai góc kề bù)

nên \(\hat{BEM}=\hat{ACB}\)

\(\hat{MAI}=\hat{MAE}+\hat{IAE}=\hat{MAB}+\hat{MEB}\)

\(=\hat{MBA}+\hat{MCA}=90^0\)

=>AM⊥IA tại A

ΔAED vuông tại A

mà AI là đường trung tuyến

nên IA=IE=ID

=>A nằm trên (I)

Xét (I) có

IA là bán kính

AM⊥ AI tại A

Do đó: AM là tiếp tuyến tại A của (I)

=>AM là tiếp tuyến của đường tròn đường kính DE

Bài 6:

a: \(A=n^2\left(n-1\right)+2n\left(1-n\right)\)

\(=n^2\left(n-1\right)-2n\left(n-1\right)\)

\(=\left(n-1\right)\left(n^2-2n\right)=n\left(n-1\right)\left(n-2\right)\)

Vì n;n-1;n-2 là ba số nguyên liên tiếp

nên n(n-1)(n-2)⋮3!

=>n(n-1)(n-2)⋮6

=>A⋮6

b: \(M=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)

\(=\left(12x^2+12x-x-1\right)\left(12x^2+8x+3x+2\right)-4\)

\(=\left(12x^2+11x-1\right)\left(12x^2+11x+2\right)-4\)

\(=\left(12x^2+11x\right)^2+2\left(12x^2+11x\right)-\left(12x^2+11x\right)-2-4\)

\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-6\)

\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)

Bài 4:

a: \(A=x\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y\)

\(=\left(x-y\right)^2\cdot\left(x-y\right)+xy\left(y-x\right)\)

\(=\left(x-y\right)^3-xy\left(x-y\right)\)

Khi x-y=5 và xy=4 thì \(A=5^3-4\cdot5=125-20=105\)

b: \(B=65^2-35^2+83^2-17^2\)

\(=\left(65-35\right)\left(65+35\right)+\left(83-17\right)\left(83+17\right)\)

\(=100\cdot30+100\cdot66=100\cdot96=9600\)

Bài 3:

a: \(4x\cdot\left(x+3\right)-x-3=0\)

=>4x(x+3)-(x+3)=0

=>(x+3)(4x-1)=0

=>\(\left[\begin{array}{l}x+3=0\\ 4x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-3\\ x=\frac14\end{array}\right.\)

b: \(x^2+4x=0\)

=>x(x+4)=0

=>\(\left[\begin{array}{l}x=0\\ x+4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-4\end{array}\right.\)

c: \(9x^2-\left(2x-1\right)^2=0\)

=>\(\left(3x\right)^2-\left(2x-1\right)^2=0\)

=>(3x-2x+1)(3x+2x-1)=0

=>(x+1)(5x-1)=0

=>\(\left[\begin{array}{l}x+1=0\\ 5x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-1\\ x=\frac15\end{array}\right.\)

d: \(\left(x^3-1\right)-\left(x-1\right)\left(x^2-5\right)=0\)

=>\(\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-5\right)=0\)

=>\(\left(x-1\right)\left(x^2+x+1-x^2+5\right)=0\)

=>(x-1)(x+6)=0

=>\(\left[\begin{array}{l}x-1=0\\ x+6=0\end{array}\right.=>\left[\begin{array}{l}x=1\\ x=-6\end{array}\right.\)

a: ΔAEH vuông tại E

mà EO là đường trung tuyến

nên EO=OA=OH

=>E nằm trên (O)

ΔADH vuông tại D

mà DO là đường trung tuyến

nên DO=OE=OA

=>D nằm trên (O)

b: ΔDBC vuông tại D

mà DM là đường trung tuyến

nên DM=MB

=>ΔMBD cân tại M

=>\(\hat{MDB}=\hat{MBD}=\hat{DBC}\)

OD=OH nên ΔODH cân tại O

=>\(\hat{ODH}=\hat{OHD}\)

\(\hat{OHD}=\hat{AHD}=\hat{ACK}=\hat{DCB}\left(=90^0-\hat{HAC}\right)\)

nên \(\hat{ODH}=\hat{DCB}\)

\(\hat{ODM}=\hat{ODH}+\hat{MDH}\)

\(=\hat{DCB}+\hat{DBC}=90^0\)

=>OD⊥MD tại D

=>MD là tiếp tuyến tại D của (O)

Bài 4:

AB//CD

=>\(\hat{BAK}=\hat{AKD}\) (hai góc so le trong)

\(\hat{BAK}=\hat{DAK}\) (AK là phân giác của góc BAD)

nên \(\hat{DAK}=\hat{DKA}\)

=>DA=DK

Ta có: DK+KC=DC

DA+BC=DC

mà DK=DA

nên CK=CB

=>ΔCKB cân tại C

=>\(\hat{CKB}=\hat{CBK}\)

\(\hat{CKB}=\hat{ABK}\) (hai góc so le trong, AB//CD)

nên \(\hat{ABK}=\hat{CBK}\)

=>BK là phân giác của góc ABC

Bài 2:

a: Xét ΔDAB có

K,E lần lượt là trung điểm của DA,DB

=>KE là đường trung bình của ΔDAB

=>KE//AB và \(KE=\frac{AB}{2}\)

Xét ΔCAB có

F,G lần lượt là trung điểm của CA,CB

Do đó: FG là đường trung bình của ΔCAB

=>FG//AB và \(FG=\frac{AB}{2}\)

Xét hình thang ABCD có

K,G lần lượt là trung điểm của AD,BC

=>KG là đường trung bình của hình thang ABCD

=>KG//AB//CD và \(KG=\frac12\left(AB+CD\right)\)

Ta có: FG//AB

KG//AB

FG,KG có điểm chung là G

Do đó: F,G,K thẳng hàng(1)

ta có: KE//AB

KG//AB

KE,KG có điểm chung là K

Do đó: K,E,G thẳng hàng(2)

Từ (1),(2) suy ra K,E,F,G thẳng hàng

b: Ta có: KE+EF+FG=KG

=>\(EF+\frac12AB+\frac12AB=\frac12\left(CD+AB\right)\)

=>\(EF=\frac12\left(CD+AB-2AB\right)=\frac12\left(CD-AB\right)\)

13 tháng 8

Bài 1:

a; A = \(x^2\) - 4\(x\) + 9

A = \(x^2\) - 4\(x\) + 4 + 5

A = (\(x-2\))\(^2\) + 5

Vì (\(x-2\))\(^2\) ≥ 0 ∀ \(x\) ⇒ (\(x-2\))\(^2\) + 5 ≥ 5 dấu bằng xảy ra khi \(x-2=0\)\(x=2\)

Vậy Amin = 5 khi \(x\) = 2

b; B = \(x^2\) - \(x+1\)

B = (\(x^2\) - 2.\(x\).\(\frac12\) + \(\frac14)+\frac34\)

B = (\(x-\frac12\))\(^2\) + \(\frac34\)

Vì (\(x-\frac12\))\(^2\) ≥ 0 ∀ \(x\); ⇒ (\(x-\frac12\))\(^2\) + \(\frac34\)\(\frac34\)

Dấu = xảy ra khi \(x-\frac12\)= 0 ⇒ \(x\) = \(\frac12\)

Vậy Bmin = \(\frac34\) khi \(x=\frac12\)

13 tháng 8

Bài 2:

a; M = \(4x-x^2+3\)

M = -(\(x^2-4x+4)+7\)

M = -(\(x^2\) - 2.\(x.2\) + 2\(^2\)) + 7

M = -(\(x-2\))\(^2\) + 7

Vì: (\(x-2)^2\) ≥ 0 ∀ \(x\)

-(\(x-2\))\(^2\) ≤ 0 ∀ \(x\)

-(\(x-2)^2\) + 7 ≤ 7 ∀ \(x\)

Dấu bằng xảy ra khi \(x-2=0\)\(x=2\)

Vậy Mmax = 7 khi \(x=2\)

b; P = \(2x-2x^2-5\)

P = -2(\(x^2\) - 2.\(x\).\(\frac12\) + \(\frac14\)) - \(\frac92\)

P = -2(\(x-\frac12\))\(^2\) - \(\frac92\)

Vì: (\(x-\frac12\))\(^2\) ≥ 0 ⇒ -2(\(x-\frac12\))\(^2\) ≤ 0

-2(\(x-\) \(\frac12\))\(^2\) - \(\frac92\) ≤ - \(\frac92\) dấu bằng xảy ra khi:

\(x-\frac12\) = 0 ⇒ \(x=\frac12\)

Vậy Pmax = - \(\frac92\) khi \(x=\frac12\)

Giúp em với ạ. Em cần gấp ạ. Cảm ơn nhiều ạ.

Bài 1:

a: \(A=x^2-4x+9\)

\(=x^2-4x+4+5\)

\(=\left(x-2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\frac12+\frac14+\frac34\)

\(=\left(x-\frac12\right)^2+\frac34\ge\frac34\forall x\)

Dấu '=' xảy ra khi \(x-\frac12=0\)

=>\(x=\frac12\)

Bài 2:

a: \(M=4x-x^2+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(P=2x-2x^2-5\)

\(=-2\cdot\left(x^2-x+\frac52\right)\)

\(=-2\left(x^2-x+\frac14+\frac94\right)\)

\(=-2\left(x-\frac12\right)^2-\frac92\le-\frac92\forall x\)

Dấu '=' xảy ra khi \(x-\frac12=0\)

=>\(x=\frac12\)

Bài 3:

a: \(A=x^2-4x+24\)

\(=x^2-4x+4+20\)

\(=\left(x-2\right)^2+20\ge20\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(B=2x^2-8x+1\)

\(=2\left(x^2-4x+\frac12\right)\)

\(=2\left(x^2-4x+4-\frac72\right)\)

\(=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

c: \(C=3x^2+x-1\)

\(=3\left(x^2+\frac13x-\frac13\right)\)

\(=3\left(x^2+2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)

\(=3\left(x+\frac16\right)^2-\frac{13}{12}\ge-\frac{13}{12}\forall x\)

Dấu '=' xảy ra khi \(x+\frac16=0\)

=>\(x=-\frac16\)

Bài 4:

a: \(A=-5x^2-4x+1\)

\(=-5\left(x^2+\frac45x-\frac15\right)\)

\(=-5\left(x^2+2\cdot x\cdot\frac25+\frac{4}{25}-\frac{9}{25}\right)\)

\(=-5\left(x+\frac25\right)^2+\frac95\le\frac95\forall x\)

Dấu '=' xảy ra khi \(x+\frac25=0\)

=>\(x=-\frac25\)

b: \(B=-3x^2+x+1\)

\(=-3\left(x^2-\frac13x-\frac13\right)\)

\(=-3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)

\(=-3\left(x-\frac16\right)^2+\frac{13}{12}\le\frac{13}{12}\forall x\)

Dấu '=' xảy ra khi \(x-\frac16=0\)

=>\(x=\frac16\)

13 tháng 8

quá nhiều bài, gửi thì gửi 1-2 bài thôi


13 tháng 8

Giải bài nào cx đc ko cần giải hết fdaau