
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài giải
Gọi số táo của mỗi người là n quả.
Dự kiến ban đầu:
- Người A bán 10000 đồng/3 quả → mỗi quả 10000/3 đồng. Tổng tiền dự kiến của A: n × 10000/3
- Người B bán 10000 đồng/2 quả → mỗi quả 5000 đồng. Tổng tiền dự kiến của B: n × 5000
Tổng tiền dự kiến: n × (10000/3 + 5000) = n × (10000/3 + 15000/3) = n × 25000/3
Người B bán chung cả 2 loại táo với giá 20000/5 quả = 4000 đồng/quả.
Tổng số táo là 2n, bán hết được 2n × 4000 = 8000n đồng.
Thiếu 15000 đồng so với dự kiến:
8000n = n × 25000/3 - 15000
Nhân 3: 24000n = 25000n - 45000 → 1000n = 45000 → n = 45
Tiền thực tế: 8000 × 45 = 360000 đồng
Giá bán thực tế mỗi quả là 4000 đồng, nên số tiền của mỗi người được chia theo số quả họ góp:
- A góp 45 quả → thực tế thu 45 × 4000 = 180000 đồng
- B góp 45 quả → thực tế thu 180000 đồng
Chênh lệch so với dự kiến ban đầu:
- A dự kiến: 45 × 10000/3 = 150000 đồng → thực tế 180000, lãi hơn 30000 đồng
- B dự kiến: 45 × 5000 = 225000 đồng → thực tế 180000, ít hơn 45000 đồng
Số tiền B thu ít hơn A: 180000 - 180000 = 0 đồng (nhưng so với dự kiến thì B ít hơn A 75000 đồng)
Đáp án: Người B thu ít hơn người A (so với dự kiến) là 75000 đồng.
Cho mình xin 1 tick với ạ

Gọi \(x\) là số quả táo của mỗi người ban đầu.
*Giá bán dự kiến của A là 10 000 đồng/3 quả, tức mỗi quả \(\frac{10 \textrm{ } 000}{3}\) đồng
*Giá bán dự kiến của B là 10 000 đồng/2 quả, tức mỗi quả 5 000 đồng.
+, Nếu bán riêng, số tiền dự kiến của cả hai là \(\frac{10 \textrm{ } 000}{3} x + 5 \textrm{ } 000 x\).
Khi B bán chung cả 2 loại táo với giá 20 000 đồng/5 quả, tức 4 000 đồng/quả, tổng số quả là \(2 x\) nên số tiền thực tế thu được là \(8 \textrm{ } 000 x\). Theo đề, số tiền thực tế ít hơn dự kiến 15 000 đồng nên ta có phương trình là:
\(\frac{10 \textrm{ } 000}{3} x + 5 \textrm{ } 000 x - 8 \textrm{ } 000 x = 15 \textrm{ } 000\)
=> \(x = 45\). Mỗi người có 45 quả, khi bán chung giá 4 000 đồng/quả, mỗi người nhận \(45 \times 4 \textrm{ } 000 = 180 \textrm{ } 000\) đồng. Vậy số tiền B thu nhiều hơn A là \(0\) đồng.

Bài giải:
Số tiền mỗi đơn vị đóng góp tỉ lệ thuận với số xe và tỉ lệ nghịch với khoảng cách, nên hệ số tỉ lệ của từng đơn vị là:
- Đơn vị 1: \(\frac{8}{1 , 5} = 5,33\)
- Đơn vị 2: \(\frac{5}{3} \approx 1,67\)
- Đơn vị 3: \(\frac{4}{1} = 4\)
Tổng hệ số: \(5,33 + 1,67 + 4 = 11\).
Vì tổng chi phí là \(340\) triệu đồng, mỗi đơn vị hệ số 1 sẽ trả \(\frac{340}{11} \approx 30,94\) triệu đồng.
Vậy:
- Đơn vị 1 trả: \(5,33 \times 30,94 \approx 164,85\) triệu đồng
- Đơn vị 2 trả: \(1,67 \times 30,94 \approx 51,52\) triệu đồng
- Đơn vị 3 trả: \(4 \times 30,94 \approx 123,64\) triệu đồng.

Gọi BM là tia đối của tia By
Ta có: \(\hat{ABy}+\hat{ABM}=180^0\) (hai góc kề bù)
=>\(\hat{ABM}=180^0-120^0=60^0\)
Ta có: tia BM nằm giữa hai tia BA và BC
=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)
=>\(\hat{CBM}=90^0-60^0=30^0\)
Ta có: \(\hat{xAm}=\hat{ABM}\left(=60^0\right)\)
mà hai góc này là hai góc ở vị đồng vị
nên Ax//BM
=>Ax//By
Ta có: \(\hat{CBM}+\hat{BCz}=30^0+150^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên By//Cz
Ta có: Ax//By
By//Cz
Do đó: Ax//By//Cz

Bài 4: Gọi BM là tia đối của tia Bb
Ta có: \(\hat{ABM}+\hat{ABb}=180^0\) (hai góc kề bù)
=>\(\hat{ABM}=180^0-120^0=60^0\)
Ta có: tia BM nằm giữa hai tia BA và BC
=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)
=>\(\hat{CBM}=80^0-60^0=20^0\)
ta có: \(\hat{ABM}+\hat{A}=60^0+120^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên a//b
Ta có: \(\hat{CBM}+\hat{C}=20^0+160^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên b//c
Ta có: a//b
b//c
Do đó: a//c
Bài 3:
Ta có: \(\hat{A_1}=\hat{B_1}\left(=110^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên a//b
Ta có: \(\hat{C_1}=\hat{C_2}\) (hai góc đối đỉnh)
mà \(\hat{C_2}=110^0\)
nên \(\hat{C_1}=110^0\)
ta có: \(\hat{C_1}=\hat{B_1}\left(=110^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên b//c
Ta có: a//b
b//c
Do đó: a//c

Ta có: \(x+120^0=180^0\) (hai góc kề bù)
=>\(x=180^0-120^0=60^0\)
Ta có: x=y (hai góc đối đỉnh)
mà \(x=60^0\)
nên \(y=60^0\)
Ta có: \(z+60^0=180^0\) (hai góc kề bù)
=>\(z=180^0-60^0=120^0\)
x = 60\(^0\) (hai góc đồng vị)
x = y = 60\(^0\) (hai góc đối đỉnh)
z = 120\(^0\) (slt)
t = 60\(^0\) (hai góc đối đỉnh)

1: Các cặp góc so le trong là \(\hat{A_4};\hat{B_2}\) ; \(\hat{A_3};\hat{B_1}\)
Các cặp góc đồng vị là \(\hat{A_1};\hat{B_1}\) ; \(\hat{A_2};\hat{B_2}\) ; \(\hat{A_4};\hat{B_4}\) ; \(\hat{A_3};\hat{B_3}\)
Các cặp góc trong cùng phía là: \(\hat{A_4};\hat{B_1}\) ; \(\hat{A_3};\hat{B_2}\)
2: Ta có: \(\hat{A_2}+\hat{A_3}=180^0\) (hai góc kề bù)
=>\(\hat{A_3}=180^0-60^0=120^0\)
Ta có: \(\hat{A_2}=\hat{A_4}\) (hai góc đối đỉnh)
mà \(\hat{A_2}=60^0\)
nên \(\hat{A_4}=60^0\)
Ta có: \(\hat{A_1}=\hat{A_3}\) (hai góc đối đỉnh)
mà \(\hat{A_3}=120^0\)
nên \(\hat{A_1}=120^0\)
Ta có: \(\hat{B_2}+\hat{B_3}=180^0\) (hai góc kề bù)
=>\(\hat{B_3}=180^0-60^0=120^0\)
ta có: \(\hat{B_1}=\hat{B_3}\) (hai góc đối đỉnh)
mà \(\hat{B_3}=120^0\)
nên \(\hat{B_1}=120^0\)
ta có: \(\hat{B_2}=\hat{B_4}\) (hai góc đối đỉnh)
mà \(\hat{B_2}=60^0\)
nên \(\hat{B_4}=60^0\)


a: Ta có: \(\hat{A_2}+\hat{A_1}=180^0\) (hai góc kề bù)
=>\(\hat{A_2}=180^0-75^0=105^0\)
ta có: \(\hat{A_1}=\hat{A_3}\) (hai góc đối đỉnh)
mà \(\hat{A_1}=75^0\)
nên \(\hat{A_3}=75^0\)
Ta có: \(\hat{A_2}=\hat{A_4}\) (hai góc đối đỉnh)
mà \(\hat{A_2}=105^0\)
nên \(\hat{A_4}=105^0\)
Ta có: \(\hat{B_3}+\hat{B_4}=180^0\) (hai góc kề bù)
=>\(\hat{B_4}=180^0-120^0=60^0\)
ta có: \(\hat{B_3}=\hat{B_1}\) (hai góc đối đỉnh)
mà \(\hat{B_3}=120^0\)
nên \(\hat{B_1}=120^0\)
Ta có: \(\hat{B_4}=\hat{B_2}\) (hai góc đối đỉnh)
mà \(\hat{B_4}=60^0\)
nên \(\hat{B_2}=60^0\)
b: Ta có: \(\hat{xEF}=90^0\)
=>xx'⊥zz' tại E
=>\(\hat{xEz}=\hat{x^{\prime}Ez}=\hat{x^{\prime}EF}=90^0\)
Ta có: \(\hat{yFz^{\prime}}+\hat{y^{\prime}Fz^{\prime}}=180^0\) (hai góc kề bù)
=>\(\hat{yFz^{\prime}}=180^0-110^0=70^0\)
ta có: \(\hat{y^{\prime}Fz^{\prime}}=\hat{yFz}\) (hai góc đối đỉnh)
mà \(\hat{y^{\prime}Fz^{\prime}}=110^0\)
nên \(\hat{yFz}=110^0\)
Ta có: \(\hat{yFz^{\prime}}=\hat{y^{\prime}Fz}\) (hai góc đối đỉnh)
mà \(\hat{yFz^{\prime}}=70^0\)
nên \(\hat{y^{\prime}Fz}=70^0\)
Đề:
Bước 1: Tính tiền dự kiến nếu bán riêng
\(T_{A} = \frac{10000}{3} \cdot n = \frac{10000 n}{3} .\)
\(T_{B} = \frac{10000}{2} \cdot n = 5000 n .\)
\(T = \frac{10000 n}{3} + 5000 n .\)
Bước 2: Tính tiền thực tế khi gộp bán
\(T^{'} = 4000 \cdot 2 n = 8000 n .\)
Bước 3: Lập phương trình “thiếu 15000 đ”
\(T - T^{'} = 15000.\)
Thay vào:
\(\left(\right. \frac{10000 n}{3} + 5000 n \left.\right) - 8000 n = 15000.\) \(\frac{10000 n}{3} - 3000 n = 15000.\) \(\frac{10000 n - 9000 n}{3} = 15000.\) \(\frac{1000 n}{3} = 15000 \Rightarrow n = 45.\)
Bước 4: Tính tiền của A và B trong thực tế
\(T_{A}^{'} = 45 \cdot 4000 = 180000\).
\(T_{B}^{'} = 45 \cdot 4000 = 180000\).
Bước 5: So sánh
→ Người A lãi thêm \(30000\) so với dự kiến.
→ Người B mất đi \(45000\) so với dự kiến.
→ So sánh A và B trong thực tế:
\(180000 - 180000 = 0.\)
✅ Kết quả:
Trong thực tế, số tiền của B không nhiều hơn A → hai người thu bằng nhau.
Nhưng vì đề hỏi “B thu ít hơn so với dự kiến bao nhiêu?” thì ta có: người B thu ít hơn người A 0 đồng, nhưng so với dự kiến thì B mất 45.000 đồng còn A được lợi 30.000 đồng.