Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a+3c=8
a+2b=9 => cần C/m 2a+2b-2c<=17
2a+3c+2b=17
a,b,c không âm=> 2b+3c>=2b-2c=> 2a+2b-2c<=17=> dpcm
đẳng thức trên xẩy ra khi c=0
N=0
c=0
a=8
b=1/2

a+3c +a+2b = 17
=>2a +2b +3c = 17
=>2.(a+b)+3c=17
=>a+b+3c/2=17/2
=> N= a+b-c-17/2=a+b-c-a-b -3c/2=-c-3c/2
=> N là các số không âm

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)

Nếu a,b khác 0 thì:
\(\hept{\begin{cases}a\inℚ\\b\sqrt{3}\notinℚ\end{cases}}\Rightarrow a+b\sqrt{3}\notinℚ\) => Vô lý
Nếu \(a=b=0\Rightarrow0+0\sqrt{3}=0\left(tm\right)\)
Vậy a = b = 0
Cho điều kiện:
\(2 \left(\right. 3 a - 2 b + c \left.\right) = a - 5 b\)
Ta cần chứng minh:
\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) \leq 0\)
Bước 1: Tìm biểu thức của \(N \left(\right. x \left.\right)\)
Giả sử \(N \left(\right. x \left.\right)\) là một đa thức bậc 2 dạng:
\(N \left(\right. x \left.\right) = a x^{2} + b x + c\)
Bước 2: Viết lại điều kiện đã cho
Điều kiện:
\(2 \left(\right. 3 a - 2 b + c \left.\right) = a - 5 b\)
Mở ngoặc:
\(6 a - 4 b + 2 c = a - 5 b\)
Chuyển hết về một vế:
\(6 a - 4 b + 2 c - a + 5 b = 0\)\(5 a + b + 2 c = 0\)
Bước 3: Tính \(N \left(\right. - 1 \left.\right)\) và \(N \left(\right. 2 \left.\right)\)
\(N \left(\right. - 1 \left.\right) = a \left(\right. - 1 \left.\right)^{2} + b \left(\right. - 1 \left.\right) + c = a - b + c\)\(N \left(\right. 2 \left.\right) = a \left(\right. 2 \left.\right)^{2} + b \left(\right. 2 \left.\right) + c = 4 a + 2 b + c\)
Bước 4: Tính tích \(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right)\)
\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) = \left(\right. a - b + c \left.\right) \left(\right. 4 a + 2 b + c \left.\right)\)
Mở rộng:
\(= a \left(\right. 4 a + 2 b + c \left.\right) - b \left(\right. 4 a + 2 b + c \left.\right) + c \left(\right. 4 a + 2 b + c \left.\right)\)\(= 4 a^{2} + 2 a b + a c - 4 a b - 2 b^{2} - b c + 4 a c + 2 b c + c^{2}\)\(= 4 a^{2} + \left(\right. 2 a b - 4 a b \left.\right) + a c + 4 a c + \left(\right. - b c + 2 b c \left.\right) - 2 b^{2} + c^{2}\)\(= 4 a^{2} - 2 a b + 5 a c + b c - 2 b^{2} + c^{2}\)
Bước 5: Sử dụng điều kiện \(5 a + b + 2 c = 0\)
Từ điều kiện, ta có thể biểu diễn \(b\) theo \(a\) và \(c\):
\(b = - 5 a - 2 c\)
Thay vào biểu thức tích:
\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) = 4 a^{2} - 2 a \left(\right. - 5 a - 2 c \left.\right) + 5 a c + \left(\right. - 5 a - 2 c \left.\right) c - 2 \left(\right. - 5 a - 2 c \left.\right)^{2} + c^{2}\)
Tính từng phần:
Trước tiên, tính \(\left(\right. - 5 a - 2 c \left.\right)^{2}\):
\(\left(\right. - 5 a - 2 c \left.\right)^{2} = 25 a^{2} + 20 a c + 4 c^{2}\)
Nên:
\(- 2 b^{2} = - 2 \left(\right. 25 a^{2} + 20 a c + 4 c^{2} \left.\right) = - 50 a^{2} - 40 a c - 8 c^{2}\)
Bước 6: Thay vào và rút gọn
\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) = 4 a^{2} + 10 a^{2} + 4 a c + 5 a c - 5 a c - 2 c^{2} - 50 a^{2} - 40 a c - 8 c^{2} + c^{2}\)
Nhóm các hạng tử cùng loại:
Vậy:
\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) = - 36 a^{2} - 36 a c - 9 c^{2} = - 9 \left(\right. 4 a^{2} + 4 a c + c^{2} \left.\right)\)
Bước 7: Xét biểu thức \(4 a^{2} + 4 a c + c^{2}\)
\(4 a^{2} + 4 a c + c^{2} = \left(\right. 2 a + c \left.\right)^{2} \geq 0\)
Vậy:
\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) = - 9 \left(\right. 2 a + c \left.\right)^{2} \leq 0\)
Kết luận:
\(\boxed{N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) \leq 0}\)
với đẳng thức xảy ra khi và chỉ khi \(2 a + c = 0\).
Tham khảo