K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho điều kiện:
\(2 \left(\right. 3 a - 2 b + c \left.\right) = a - 5 b\)

Ta cần chứng minh:
\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) \leq 0\)

Bước 1: Tìm biểu thức của \(N \left(\right. x \left.\right)\)

Giả sử \(N \left(\right. x \left.\right)\) là một đa thức bậc 2 dạng:

\(N \left(\right. x \left.\right) = a x^{2} + b x + c\)

Bước 2: Viết lại điều kiện đã cho

Điều kiện:

\(2 \left(\right. 3 a - 2 b + c \left.\right) = a - 5 b\)

Mở ngoặc:

\(6 a - 4 b + 2 c = a - 5 b\)

Chuyển hết về một vế:

\(6 a - 4 b + 2 c - a + 5 b = 0\)\(5 a + b + 2 c = 0\)

Bước 3: Tính \(N \left(\right. - 1 \left.\right)\) và \(N \left(\right. 2 \left.\right)\)

\(N \left(\right. - 1 \left.\right) = a \left(\right. - 1 \left.\right)^{2} + b \left(\right. - 1 \left.\right) + c = a - b + c\)\(N \left(\right. 2 \left.\right) = a \left(\right. 2 \left.\right)^{2} + b \left(\right. 2 \left.\right) + c = 4 a + 2 b + c\)

Bước 4: Tính tích \(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right)\)

\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) = \left(\right. a - b + c \left.\right) \left(\right. 4 a + 2 b + c \left.\right)\)

Mở rộng:

\(= a \left(\right. 4 a + 2 b + c \left.\right) - b \left(\right. 4 a + 2 b + c \left.\right) + c \left(\right. 4 a + 2 b + c \left.\right)\)\(= 4 a^{2} + 2 a b + a c - 4 a b - 2 b^{2} - b c + 4 a c + 2 b c + c^{2}\)\(= 4 a^{2} + \left(\right. 2 a b - 4 a b \left.\right) + a c + 4 a c + \left(\right. - b c + 2 b c \left.\right) - 2 b^{2} + c^{2}\)\(= 4 a^{2} - 2 a b + 5 a c + b c - 2 b^{2} + c^{2}\)

Bước 5: Sử dụng điều kiện \(5 a + b + 2 c = 0\)

Từ điều kiện, ta có thể biểu diễn \(b\) theo \(a\) và \(c\):

\(b = - 5 a - 2 c\)

Thay vào biểu thức tích:

\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) = 4 a^{2} - 2 a \left(\right. - 5 a - 2 c \left.\right) + 5 a c + \left(\right. - 5 a - 2 c \left.\right) c - 2 \left(\right. - 5 a - 2 c \left.\right)^{2} + c^{2}\)

Tính từng phần:

  • \(- 2 a b = - 2 a \left(\right. - 5 a - 2 c \left.\right) = 10 a^{2} + 4 a c\)
  • \(b c = \left(\right. - 5 a - 2 c \left.\right) c = - 5 a c - 2 c^{2}\)
  • \(- 2 b^{2} = - 2 \left(\right. - 5 a - 2 c \left.\right)^{2}\)

Trước tiên, tính \(\left(\right. - 5 a - 2 c \left.\right)^{2}\):

\(\left(\right. - 5 a - 2 c \left.\right)^{2} = 25 a^{2} + 20 a c + 4 c^{2}\)

Nên:

\(- 2 b^{2} = - 2 \left(\right. 25 a^{2} + 20 a c + 4 c^{2} \left.\right) = - 50 a^{2} - 40 a c - 8 c^{2}\)

Bước 6: Thay vào và rút gọn

\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) = 4 a^{2} + 10 a^{2} + 4 a c + 5 a c - 5 a c - 2 c^{2} - 50 a^{2} - 40 a c - 8 c^{2} + c^{2}\)

Nhóm các hạng tử cùng loại:

  • \(a^{2}\)\(4 + 10 - 50 = - 36 a^{2}\)
  • \(a c\)\(4 + 5 - 5 - 40 = - 36 a c\)
  • \(c^{2}\)\(- 2 - 8 + 1 = - 9 c^{2}\)

Vậy:

\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) = - 36 a^{2} - 36 a c - 9 c^{2} = - 9 \left(\right. 4 a^{2} + 4 a c + c^{2} \left.\right)\)

Bước 7: Xét biểu thức \(4 a^{2} + 4 a c + c^{2}\)

\(4 a^{2} + 4 a c + c^{2} = \left(\right. 2 a + c \left.\right)^{2} \geq 0\)

Vậy:

\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) = - 9 \left(\right. 2 a + c \left.\right)^{2} \leq 0\)

Kết luận:

\(\boxed{N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) \leq 0}\)

với đẳng thức xảy ra khi và chỉ khi \(2 a + c = 0\).

Tham khảo

8 tháng 1 2017

a+3c=8

a+2b=9 => cần C/m 2a+2b-2c<=17

2a+3c+2b=17

a,b,c không âm=> 2b+3c>=2b-2c=> 2a+2b-2c<=17=> dpcm

đẳng thức trên xẩy ra khi c=0

N=0

c=0

a=8

b=1/2

15 tháng 2 2018

 a+3c +a+2b = 17 

=>2a +2b +3c = 17

=>2.(a+b)+3c=17

=>a+b+3c/2=17/2

=> N= a+b-c-17/2=a+b-c-a-b -3c/2=-c-3c/2

=> N là các số  không âm

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)

26 tháng 6 2021

Nếu a,b khác 0 thì:

\(\hept{\begin{cases}a\inℚ\\b\sqrt{3}\notinℚ\end{cases}}\Rightarrow a+b\sqrt{3}\notinℚ\) => Vô lý

Nếu \(a=b=0\Rightarrow0+0\sqrt{3}=0\left(tm\right)\)

Vậy a = b = 0