
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 13:
a: \(\left\lbrack5\left(x-2y\right)^3\right\rbrack:\left(5x-10y\right)\)
\(=\frac{5\left(x-2y\right)^3}{5\cdot\left(x-2y\right)}\)
\(=\left(x-2y\right)^2\)
b: \(\left\lbrack5\left(a-b\right)^3+2\left(a-b\right)^2\right\rbrack:\left(b-a\right)^2\)
\(=\frac{5\left(a-b\right)^3+2\left(a-b\right)^2}{\left(a-b\right)^2}\)
\(=\frac{5\left(a-b\right)^3}{\left(a-b\right)^2}+\frac{2\left(a-b\right)^2}{\left(a-b\right)^2}\)
=5(a-b)+2
c: Sửa đề: \(\left(x^3+8y^3\right):\left(x+2y\right)\)
\(=\frac{\left(x+2y\right)\left(x^2-2xy+4y^2\right)}{x+2y}\)
\(=x^2-2xy+4y^2\)
Bài 11:
a: Gọi ba số tự nhiên liên tiếp lần lượt là a;a+1;a+2
Tích của hai số sau lớn hơn tích của hai số đầu là 52 nên ta có:
\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=52\)
=>\(\left(a+1\right)\left(a+2-a\right)=52\)
=>2(a+1)=52
=>a+1=26
=>a=25
Vậy: ba số tự nhiên liên tiếp cần tìm là 25;25+1=26; 25+2=27
b: a chia 5 dư 1 nên a=5x+1
b chia 5 dư 4 nên b=5y+4
ab+1
\(=\left(5x+1\right)\left(5y+4\right)+1\)
=25xy+20x+5y+4+1
=25xy+20x+5y+5
=5(5xy+4x+y+1)⋮5
c: \(Q=2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
=6n⋮6
Bài 8:
a: \(A=x^2+2xy-3x^3+2y^3+3x^3-y^3\)
\(=x^2+2xy-3x^3+3x^3+2y^3-y^3\)
\(=x^2+2xy+y^3\)
Khi x=5;y=4 thì \(A=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)
b: x=-1;y=-1
=>xy=1
\(x^2y^2=\left(xy\right)^2=1^2=1;x^4y^4=\left(xy\right)^4=1^4=1\) ; \(x^6y^6=\left(xy\right)^6=1^6=1;x^8y^8=\left(xy\right)^8=1^8=1\)
=>B=1-1+1-1+1=1

bạn lưu ảnh rồi gửi qua file đi ạ chứ bn cóp sang thì ko hiện ảnh mất rồi

a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

1: \(\frac{1-a\cdot\sqrt{a}}{1-\sqrt{a}}=\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)^{}}{1-\sqrt{a}}=1+\sqrt{a}+a\)
2: \(\frac{\sqrt{x+3}+\sqrt{x-3}}{\sqrt{x+3}-\sqrt{x-3}}=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}{\left(\sqrt{x+3}-\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}\)
\(=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)^2}{x+3-\left(x-3\right)}=\frac{x+3+x-3+2\sqrt{\left(x+3\right)\left(x-3\right)}}{6}\)
\(=\frac{2x+2\sqrt{x^2-9}}{6}=\frac{x+\sqrt{x^2-9}}{3}\)
4: \(\frac{3}{2\sqrt{9x}}=\frac{3}{2\cdot3\sqrt{x}}=\frac{1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}\)
5: \(\frac{1}{2\sqrt{x}}=\frac{1\cdot\sqrt{x}}{2\sqrt{x}\cdot\sqrt{x}}=\frac{\sqrt{x}}{2x}\)
7: \(\frac{\sqrt{a^3}+a}{\sqrt{a}-1}=\frac{a\cdot\sqrt{a}+a}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a\left(a+2\sqrt{a}+1\right)}{a-1}=\frac{a^2+2a\cdot\sqrt{a}+a}{a-1}\)
8: \(\frac{2}{\sqrt{a}+\sqrt{2b}}=\frac{2\cdot\left(\sqrt{a}-\sqrt{2b}\right)}{\left(\sqrt{a}+\sqrt{2b}\right)\left(\sqrt{a}-\sqrt{2b}\right)}=\frac{2\sqrt{a}-2\sqrt{2b}}{a-2b}\)
10: \(\frac{25}{\sqrt{a}-\sqrt{b}}=\frac{25\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{25\sqrt{a}+25\sqrt{b}}{a-b}\)
11: \(-\frac{ab}{\sqrt{a}-\sqrt{b}}=-\frac{ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{-ab\cdot\sqrt{a}-ab\cdot\sqrt{b}}{a-b}\)


a. áp dụnng định lý pythagore vào △ ABC vuông tại A ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(\operatorname{cm}\right)\)
b. diện tích △ ABC là:
\(\frac{6\cdot8}{2}=24\left(\operatorname{cm}^2\right)\)
c. ta có: \(BC\cdot AH=AB\cdot AC\)
\(\Rightarrow AH=\frac{AB\cdot AC}{BC}=\frac{6\cdot8}{10}=4,8\left(\operatorname{cm}\right)\)
áp dụng định lý pythagore vào △ ABH vuông tại H ta được:
\(HB=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6\left(\operatorname{cm}\right)\)
áp dụng định lý pythagore vào △ AHC vuông tại H ta được:
\(HC=\sqrt{AC^2-AH^2}=\sqrt{8^2-4,8^2}=6,4\left(\operatorname{cm}\right)\)
d. vì M là trung điểm của cạnh BC
⇒ MB = MC = BC : 2 = 10 : 2 = 5 (cm)
ta có: BH + HM = BM
⇒ HM = BM - BH = 5 - 3,6 = 1,4 (cm)
áp dụng định lý pythagore vào △ AHM vuông tại H ta có:
\(AM=\sqrt{AH^2+HM^2}=\sqrt{4,8^2+1,4^2}=5\left(\operatorname{cm}\right)\)

a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>\(HB=HC=\frac{BC}{2}=\frac{12}{2}=6\left(\operatorname{cm}\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2=10^2-6^2=100-36=64=8^2\)
=>HA=8(cm)
b: Diện tích tam giác ABC là:
\(S_{ABC}=\frac12\cdot AH\cdot BC=\frac12\cdot12\cdot8=4\cdot12=48\left(\operatorname{cm}^2\right)\)

10) đkxđ: \(x\ne\pm3\)
\(\frac{7}{a^2-9}+\frac{5}{a-3}+\frac{1}{a+3}=\frac{7}{\left(a-3\right)\left(a+3\right)}+\frac{5\cdot\left(a+3\right)}{\left(a+3\right)\left(a-3\right)}+\frac{a-3}{\left(a+3\right)\left(a-3\right)}\)
\(=\frac{7+5a+15+a-3}{\left(a+3\right)\left(a-3\right)}=\frac{6a+19}{\left(a+3\right)\left(a-3\right)}\)
11) đkxđ: \(x\ne-1\)
\(\frac{2x-1}{x^3+1}+\frac{2x}{x^2-x+1}-\frac{x}{x+1}+2\)
\(=\frac{2x-1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{2x\cdot\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{x\cdot\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{2\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\) \(=\frac{2x-1+2x^2+2x-x^3+x^2-x+2x^3+2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)^3}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)^2}{x^2-x+1}\)
13) đkxđ: \(x\ne\pm\frac32\)
\(\frac{5}{2x-3}+\frac{2}{2x+3}-\frac{2x+5}{9-4x^2}\)
\(=\frac{5\cdot\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2\cdot\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2x+5}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\frac{10x+15+4x-6+2x+5}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\frac{16x+14}{\left(2x-3\right)\left(2x+3\right)}\)

Bài 5:
a: \(\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)
\(=x^3+y^3\)
b: \(M=x^3+y^3+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
\(=1^3-3xy+3xy=1\)
\(N=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left\lbrack\left(x+y\right)^2-2xy\right\rbrack+6x^2y^2\)
\(=1^3-3xy\cdot1+3xy\left\lbrack1+2xy\right\rbrack-6x^2y^2\)
=1-3xy+3xy\(+6x^2y^2-6x^2y^2\)
=1
Bài 4:
a: \(\left(x-2\right)^3-x\left(x+1\right)\left(x-1\right)+6x^2=5\)
=>\(x^3-6x^2+12x-8-x\left(x^3-1\right)+6x^2=5\)
=>\(x^3+12x-8-x^3+x=5\)
=>13x-8=5
=>13x=13
=>x=1
b: \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)
=>\(x^3-6x^2+12x-8-x^3+6x^2=4\)
=>12x-8=4
=>12x=12
=>x=1
c: \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
=>\(x^3+9x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3+1=28\)
=>\(9x^3+9x^2+27x+28-9x^3-6x^2-x=28\)
=>\(3x^2+26x=0\)
=>x(3x+26)=0
=>\(\left[\begin{array}{l}x=0\\ 3x+26=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-\frac{26}{3}\end{array}\right.\)
d: \(\left(x^2-1\right)^3-\left(x^2-1\right)\left(x^4+x^2+1\right)=0\)
=>\(x^6-3x^4+3x^2-1-\left(x^6-1\right)=0\)
=>\(-3x^4+3x^2=0\)
=>\(-3x^2\left(x^2-1\right)=0\)
=>\(\left[\begin{array}{l}x^2=0\\ x^2=1\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=1\\ x=-1\end{array}\right.\)
e: \(\left(x+1\right)^3+\left(x-2\right)^3-2x^2\left(x-\frac32\right)=3\)
=>\(x^3+3x^2+3x+1+x^3-6x^2+12x-8-2x^3+3x^2=3\)
=>15x-7=3
=>15x=10
=>\(x=\frac{10}{15}=\frac23\)
f: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
=>\(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)
=>\(6x^2+2-6x^2+12x-6=-10\)
=>12x-4=-10
=>12x=-6
=>\(x=-\frac{6}{12}=-\frac12\)
Bài 3:
a: \(A=x^3+12x^2+48x+64\)
\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3=\left(x+4\right)^3\)
Khi x=6 thì \(A=\left(6+4\right)^3=10^3=1000\)
b: \(B=x^3-6x^2+12x-8\)
\(=x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3\)
\(=\left(x-2\right)^3\)
Khi x=22 thì \(B=\left(22-2\right)^3=20^3=8000\)
c: \(C=8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
Thay x=25,5 vào C, ta được:
\(C=\left(2\cdot25,5-1\right)^3=50^3=125000\)
d: \(D=1-x+\frac{x^2}{3}-\frac{x^3}{27}\)
\(=1^3-3\cdot1^2\cdot\frac13x+3\cdot1\cdot\left(\frac13x\right)^3-\left(\frac13x\right)^3=\left(1-\frac13x\right)^3\)
Thay x=-27 vào D, ta được:
\(D=\left\lbrack1-\left(-\frac13\right)\cdot27\right\rbrack^3=10^3=1000\)
e: \(E=\frac{x^3}{y^3}+\frac{6x^2}{y^2}+12\cdot\frac{x}{y}+8\)
\(=\left(\frac{x}{y}\right)^3+3\cdot\left(\frac{x}{y}\right)^2\cdot2+3\cdot\frac{x}{y}\cdot2^2+2^3\)
\(=\left(\frac{x}{y}+2\right)^3\)
Thay x=36;y=2 vào D, ta được:
\(D=\left(\frac{36}{2}+2\right)^3=\left(18+2\right)^3=20^3=8000\)
Bài 2:
a: \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3=\left(x-1\right)^3\)
b: \(8-12x+6x^2-x^3=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3=\left(2-x\right)^3\)
c: \(27+27x+9x^2+x^3\)
\(=x^3+3\cdot x^2\cdot3+3\cdot x\cdot3^2+3^3\)
\(=\left(x+3\right)^3\)
d: \(\left(x-y\right)^3+\left(x-y\right)^2+\frac13\left(x-y\right)+\frac{1}{27}\)
\(=\left(x-y\right)^3+3\cdot\left(x-y\right)^2\cdot\frac13+3\cdot\left(x-y\right)\cdot\left(\frac13\right)^2+\left(\frac13\right)^3\)
\(=\left(x-y+\frac13\right)^3\)
\(A=\frac{x-4}{x^2-4}+\frac{2}{x+2}-\frac{1}{x-2}\)
\(=\frac{x-4}{\left(x-2\right)\left(x+2\right)}+\frac{2\cdot\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x+2}{\left(x-2\right)\left(x+2\right)}\)
\(\) \(=\frac{x-4+2x-4-x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x-10}{\left(x-2\right)\left(x+2\right)}\)
\(B=1-\frac{x}{x+2}=\frac{x+2}{x+2}-\frac{x}{x+2}\)
\(=\frac{x+2-x}{x+2}=\frac{2}{x+2}\)
\(P=\frac{A}{B}=\frac{\frac{2x-10}{\left(x-2\right)\left(x+2\right)}}{\frac{2}{x+2}}=\frac{2\left(x-5\right)\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}=\frac{x-5}{x-2}\)
b) \(P=\frac{x-5}{x-2}=\frac{x-2-3}{x-2}=1-\frac{3}{x-2}\)
để P nhận giá trị dương thì x-2 thuộc \(Ư\left(3\right)=\left\lbrace\pm1;\pm3\right\rbrace\)
thay x = 1 vào P ta được P = 4 (TM)
thay x = -1 vào P ta được P = 2(TM)
thay x = 3 vào P ta được P = -2(KTM)
thay x = -3 vào P ta được P = 1,6(KTM)
vậy \(x\in\pm1\) thì P nhận giá trị nguyên dương
a. \((\frac{x-4}{x^2-4}+\frac{2}{x+2}-\frac{1}{x-2}):\left(1-\frac{x}{x+2})\right.\)
\(=\frac{x-4+2(x-2)-(x+2)}{(x-2)(x+2)}:\frac{x+2-x}{x+2}\)
\(=\frac{2x-8}{(x-2)(x+2)}\times\frac{x+2}{2}=\frac{x-4}{x-2}\)
b, để \(P\in N\) =>\(x-4\) chia hết cho x-2
=> x-2-2 chia hết cho x-2
mà x-2 chia hết cho x-2
=> 2 chia hết cho x-2
\(\rArr x-2\inƯ\left(2)=\cdot\left\lbrace1;2\right\rbrace\right.\)
=> x=3;x=5