
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(a,3^2=9;2^3=8\Rightarrow3^2>2^3\)
\(b,3^{39}=\left(3^{13}\right)^3\)
\(11^{21}=\left(11^7\right)^3\)

3^39 và 11^21
Ta có: 3^39<3^42= 3^6.7= (3^6)^7= 729^7
11^21= 11^3.7= (11^3)^7= 1331^7
Vì 729^7<1331^7 nên 3^39<11^21

Ta có:
\(2^{3^{2^3}}=2^{3^8}=2^{6561}=2^{3.2187}=8^{2187}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Ta thấy \(8^{2187}>3^{512}\Rightarrow2^{3^{2^3}}>3^{2^{3^2}}\)
\(2^{3^{2^3}}=2^{3^8}=2^{6561}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Tới đây mk chịu để mk suy nghĩ đã!

a) \(3^{39}\) và \(11^{21}\)
\(\Rightarrow3^{39}=3^{13.3}=1594323^3\)
\(\Rightarrow11^{21}=11^{7.3}=194487171^3\)
Nên \(3^{39}< 11^{21}\)
b) \(199^{20}\) và \(2003^{15}\)
\(\Rightarrow199^{20}=199^{4.5}=1568239201^5\)
\(\Rightarrow2003^{15}=8036054027^5\)
Nên \(199^{20}< 2003^{15}\)

11 mũ 39 > 5 mũ 26 vì cơ số và số mũ đều hơn
2 mũ 125 và 3 mũ 75
2^125=(2^5)^25=32^25
3^75=(3^3)^25=27^25
Vì 32^25>27^25 nên 2^125>3^75
5^40=(5^4)^10=3125^10
Vì 3125^10>620^10 nên 5^40>620^10

nghuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

b)Ta có:
\(3^{99}>3^{93}=\left(3^3\right)^{21}=27^{21}\)
Vì \(27^{21}>11^{21}\) nên \(3^{99}>27^{21}>11^{21}\) hay \(3^{99}>11^{21}\)
a) Ta có:
19920 < 20020 = 20015.2005
200315 > 200015 = 20015.1015 = 20015.(103)5 = 20015.10005
Vì 19920 < 20015.2005 < 20015.10005 < 200315
=> 19920 < 200315
b) Ta có:
399 = (33)33 = 2733 > 1121
=> 399 > 1121

2^6=64
8^2=64. Vậy 2^6=8^2
5^3=125, 3^5=243. Vì 243>125 nên 5^3<3^5

Ta có:
\(2^{3^{2^3}}=2^{3^8}=2^{6561}=2^{3.2187}=\left(2^3\right)^{2187}=8^{2187}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Vì: 8 > 3 và 2187 > 512
\(\Rightarrow8^{2187}>3^{512}\)
\(\Rightarrow2^{3^{2^3}}>3^{2^{3^2}}\)
Vậy: \(2^{3^{2^3}}>3^{2^{3^2}}\)
Bản chất vấn đề:
So sánh nhanh:
Kết luận:
\(\boxed{3^{39} \gg 11^{2}} .\)
\(3^{39}>11^2\)