Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)
=> \(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}=\frac{3}{10}\)
=> \(x=\frac{3}{10}:\frac{2}{3}=\frac{9}{20}\)
Vậy \(x\in\left\{\frac{9}{20}\right\}\)
\(b,x+\frac{1}{4}=\frac{4}{3}\)
=> \(x=\frac{4}{3}-\frac{1}{4}=\frac{13}{12}\)
Vậy \(x\in\left\{\frac{13}{12}\right\}\)
\(c,\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)
=> \(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}=\frac{5}{14}\)
=> \(x=\frac{5}{14}:\frac{3}{5}=\frac{25}{42}\)
Vậy \(x\in\left\{\frac{25}{42}\right\}\)
\(d,\left|x+5\right|-6=9\)
=> \(\left|x+5\right|=9+6=15\)
=> \(\left[{}\begin{matrix}x+5=15\\x+5=-15\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=15-5=10\\x=-15-5=-20\end{matrix}\right.\)
Vậy \(x\in\left\{10;-20\right\}\)
\(e,\left|x-\frac{4}{5}\right|=\frac{3}{4}\)
=> \(\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{4}\\x-\frac{4}{5}=-\frac{3}{4}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{3}{4}+\frac{4}{5}=\frac{31}{20}\\x=-\frac{3}{4}+\frac{4}{5}=\frac{1}{20}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{31}{20};\frac{1}{20}\right\}\)
\(f,\frac{1}{2}-\left|x\right|=\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{2}-\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{6}\)
=> \(\left[{}\begin{matrix}x=\frac{1}{6}\\x=-\frac{1}{6}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{6};-\frac{1}{6}\right\}\)
\(g,x^2=16\)
=> \(\left|x\right|=\sqrt{16}=4\)
=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
vậy \(x\in\left\{4;-4\right\}\)
\(h,\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
=> \(x-\frac{1}{2}=\sqrt[3]{\frac{1}{27}}=\frac{1}{3}\)
=> \(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)
Vậy \(x\in\left\{\frac{5}{6}\right\}\)
\(i,3^3.x=3^6\)
\(x=3^6:3^3=3^3=27\)
Vậy \(x\in\left\{27\right\}\)
\(J,\frac{1,35}{0,2}=\frac{1,25}{x}\)
=> \(x=\frac{1,25.0,2}{1,35}=\frac{5}{27}\)
Vậy \(x\in\left\{\frac{5}{27}\right\}\)
\(k,1\frac{2}{3}:x=6:0,3\)
=> \(\frac{5}{3}:x=20\)
=> \(x=\frac{5}{3}:20=\frac{1}{12}\)
Vậy \(x\in\left\{\frac{1}{12}\right\}\)

bài 1b)
\(8\frac{1}{14}-6\frac37\)
C1:\(\frac{113}{14}-\frac{45}{7}\) =\(\frac{113}{14}-\frac{90}{14}=\frac{23}{14}\)
C2:\(8\frac{1}{14}-6\frac37=\left(8-6\right)+\left(\frac{1}{14}-\frac37\right)=2+\left(\frac{1}{14}-\frac{6}{14}\right)\)
\(=2+\frac{-5}{14}=\frac{28}{14}-\frac{5}{14}=\frac{23}{14}\)
bài 1 c)\(7-3\frac67\)
C1:\(\) \(7-3\frac67=7-\frac{27}{7}=\frac{49}{7}-\frac{27}{7}=\frac{22}{7}\)
C2:\(7-3\frac67=\left(7-3\right)-\frac67=4-\frac67=\frac{28}{7}-\frac67=\frac{22}{7}\)

a) \(\left(-\frac{3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-9}{4}\right):\frac{3}{7}\)
= \(\left(-\frac{3}{4}+\frac{2}{5}\right)\cdot\frac{7}{3}+\left(\frac{3}{5}+\frac{-9}{4}\right)\cdot\frac{7}{3}\)
= \(\left(-\frac{15}{20}+\frac{8}{20}\right)\cdot\frac{7}{3}+\left(\frac{12}{20}-\frac{45}{20}\right)\cdot\frac{7}{3}\)
= \(-\frac{7}{20}\cdot\frac{7}{3}-\frac{33}{20}\cdot\frac{7}{3}\)
=\(\frac{7}{3}\cdot\left(-\frac{7}{20}-\frac{33}{20}\right)\)
=\(\frac{7}{3}\cdot\left(-2\right)\)
=\(-\frac{14}{3}\)

Bài 1:
a) \(\left(\dfrac{3}{8}+\dfrac{-3}{4}+\dfrac{7}{12}\right):\dfrac{5}{6}+\dfrac{1}{2}\)
\(=\left(\dfrac{9}{24}+\dfrac{-18}{24}+\dfrac{14}{24}\right):\dfrac{5}{6}+\dfrac{1}{2}\)
\(=\dfrac{5}{24}:\dfrac{5}{6}+\dfrac{1}{2}\)
\(=\dfrac{5}{24}.\dfrac{6}{5}+\dfrac{1}{2}\)
\(=\dfrac{1}{4}+\dfrac{1}{2}\)
\(=\dfrac{1}{4}+\dfrac{2}{4}\)
\(=\dfrac{3}{4}\)
b) \(\dfrac{1}{2}+\dfrac{3}{4}-\left(\dfrac{3}{4}-\dfrac{4}{5}\right)\)
\(=\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{3}{4}+\dfrac{4}{5}\)
\(=\left(\dfrac{1}{2}+\dfrac{4}{5}\right)+\left(\dfrac{3}{4}-\dfrac{3}{4}\right)\)
\(=\dfrac{1}{2}+\dfrac{4}{5}\)
\(=\dfrac{5}{10}+\dfrac{8}{10}\)
\(=\dfrac{9}{5}\)
c) \(6\dfrac{5}{12}:2\dfrac{3}{4}+11\dfrac{1}{4}.\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)
\(=\dfrac{77}{12}:\dfrac{11}{4}+\dfrac{42}{4}.\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)
\(=\dfrac{77}{12}.\dfrac{4}{11}+\dfrac{42}{4}.\left(\dfrac{5}{15}+\dfrac{3}{15}\right)\)
\(=\dfrac{7}{3}+\dfrac{42}{4}.\dfrac{8}{15}\)
\(=\dfrac{7}{3}+\dfrac{14.2}{1.3}\)
\(=\dfrac{7}{3}+\dfrac{28}{3}\)
\(=\dfrac{35}{3}\)
d) \(\left(\dfrac{7}{8}-\dfrac{3}{4}\right).1\dfrac{1}{3}-\dfrac{2}{7}.\left(3,5\right)^2\)
\(=\left(\dfrac{7}{8}-\dfrac{6}{8}\right).\dfrac{4}{3}-\dfrac{2}{7}.12\dfrac{1}{4}\)
\(=\dfrac{1}{8}.\dfrac{4}{3}-\dfrac{2}{7}.\dfrac{49}{4}\)
\(=\dfrac{1}{6}-\dfrac{7}{2}\)
\(=\dfrac{1}{6}-\dfrac{21}{6}\)
\(=\dfrac{-10}{3}\)
e) \(\left(\dfrac{3}{5}+0,415-\dfrac{3}{200}\right).2\dfrac{2}{3}.0,25\)
\(=\left(\dfrac{3}{5}+\dfrac{83}{200}-\dfrac{3}{200}\right).\dfrac{8}{3}.\dfrac{1}{4}\)
\(=\left(\dfrac{120}{200}+\dfrac{83}{200}-\dfrac{3}{200}\right).\dfrac{8}{3}.\dfrac{1}{4}\)
\(=1.\dfrac{8}{3}.\dfrac{1}{4}\)
\(=\dfrac{2}{3}\)
f) \(\dfrac{5}{16}:0,125-\left(2\dfrac{1}{4}-0,6\right).\dfrac{10}{11}\)
\(=\dfrac{5}{16}:\dfrac{1}{8}-\left(\dfrac{9}{4}-\dfrac{3}{5}\right).\dfrac{10}{11}\)
\(=\dfrac{5}{16}.\dfrac{8}{1}-\left(\dfrac{45}{20}-\dfrac{12}{20}\right).\dfrac{10}{11}\)
\(=\dfrac{5}{2}-\dfrac{33}{20}.\dfrac{10}{11}\)
\(=\dfrac{5}{2}-\dfrac{3}{2}\)
\(=\dfrac{2}{2}=1\)
g) \(0,25:\left(10,3-9,8\right)-\dfrac{3}{4}\)
\(=\dfrac{1}{4}:\dfrac{1}{2}-\dfrac{3}{4}\)
\(=\dfrac{1}{4}.\dfrac{2}{1}-\dfrac{3}{4}\)
\(=\dfrac{1}{2}-\dfrac{3}{4}\)
\(=\dfrac{2}{4}-\dfrac{3}{4}\)
\(=\dfrac{-1}{4}\)
h) \(1\dfrac{13}{15}.0,75-\left(\dfrac{11}{20}+20\%\right):\dfrac{7}{3}\)
\(=\dfrac{28}{15}.\dfrac{3}{4}-\left(\dfrac{11}{20}+\dfrac{1}{5}\right):\dfrac{7}{3}\)
\(=\dfrac{7}{5}-\left(\dfrac{11}{20}+\dfrac{4}{20}\right):\dfrac{7}{3}\)
\(=\dfrac{7}{5}-\dfrac{3}{4}:\dfrac{7}{3}\)
\(=\dfrac{7}{5}-\dfrac{9}{28}\)
\(=\dfrac{196}{140}-\dfrac{45}{140}\)
\(=\dfrac{151}{140}\)
i) \(\dfrac{\left(\dfrac{1}{2-0,75}\right).\left(0,2-\dfrac{2}{5}\right)}{\dfrac{5}{9}-1\dfrac{1}{12}}\)
\(=\dfrac{\left(\dfrac{1}{1,25}\right).\left(\dfrac{1}{5}-\dfrac{2}{5}\right)}{\dfrac{5}{9}-\dfrac{13}{12}}\)
\(=\dfrac{\dfrac{1}{1,25}.\dfrac{-1}{5}}{\dfrac{20}{36}-\dfrac{39}{36}}\)
\(=\dfrac{\dfrac{-1}{6,25}}{\dfrac{-19}{36}}\)
k) \(\dfrac{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{1}{14}}{-1-\dfrac{3}{7}+\dfrac{3}{28}}\)
\(=\dfrac{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{28}}{-\dfrac{3}{3}-\dfrac{3}{7}+\dfrac{3}{28}}\)
\(=\dfrac{2\left(\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{28}\right)}{\left(-3\right)\left(\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{28}\right)}\)
\(=-\dfrac{2}{3}\)
\(A=0,7.2\dfrac{2}{3}.20.0,375.\dfrac{5}{28}\)
\(A=\dfrac{7}{10}.\dfrac{8}{3}.20.\dfrac{3}{8}.\dfrac{5}{28}\)
\(A=\left(\dfrac{7}{10}.\dfrac{5}{28}\right).\left(\dfrac{8}{3}.\dfrac{3}{8}\right).20\)
\(A=\dfrac{1}{8}.1.20\)
\(A=\dfrac{20}{8}=\dfrac{5}{2}\)
\(B=\left(9\dfrac{30303}{80808}+7\dfrac{303030}{484848}\right)+4,03\)
\(B=\left(9\dfrac{3}{8}+7\dfrac{5}{8}\right)+4,03\)
\(B=\left[\left(9+7\right)+\left(\dfrac{3}{8}+\dfrac{5}{8}\right)\right]+4,03\)
\(B=\left(16+1\right)+4,03\)
\(B=17+4,03\)
\(B=21,03\)
\(C=\left(9,75.21\dfrac{3}{7}+\dfrac{39}{4}.18\dfrac{4}{7}\right).\dfrac{15}{78}\)
\(C=\left(\dfrac{39}{4}.\dfrac{150}{7}+\dfrac{39}{4}.\dfrac{130}{7}\right).\dfrac{15}{78}\)
\(C=\dfrac{39}{4}.\left(\dfrac{150}{7}+\dfrac{130}{7}\right).\dfrac{15}{78}\)
\(C=\dfrac{39}{4}.40.\dfrac{15}{78}\)
\(C=390.\dfrac{15}{78}\)
\(C=75\)

\(\left(6+\left(\frac{1}{2}\right)^3-\left|-\frac{1}{2}\right|\right):\frac{3}{12}\)
\(=\left(6+\frac{1}{8}+\frac{1}{2}\right):\frac{1}{4}\)
=\(\frac{53}{8}:\frac{1}{4}\)
\(=\frac{53}{2}\)
a)30/60,-40/60,45/60,48/60
45/60>30/60>-40/60>-48/60
=3/4>1/2>-2/3>-4/5

a )
\(\frac{-4}{9}.\frac{1}{3}-\frac{4}{9}.\frac{5}{6}+\frac{3}{7}.\frac{4}{9}\)
\(=\frac{4}{9}.\left(-\frac{1}{3}-\frac{5}{6}+\frac{3}{7}\right)\)
\(=\frac{4}{9}.\left(-\frac{14}{42}-\frac{35}{42}+\frac{18}{42}\right)\)
\(=\frac{4}{9}.\frac{-31}{42}\)
\(=-\frac{62}{189}\)
b )
\(\frac{2}{3}:\frac{3}{7}-\frac{2}{3}:\frac{4}{3}+\frac{2}{3}:\frac{1}{21}\)
\(=\frac{2}{3}.\frac{7}{3}-\frac{2}{3}.\frac{3}{4}+\frac{2}{3}.21\)
\(=\frac{14}{9}-\frac{1}{2}+14\)
\(=\frac{28}{18}-\frac{9}{18}+14\)
\(=\frac{19}{18}+14\)
\(=1+14+\frac{1}{18}\)
\(=15\frac{1}{18}\)
c )
\(\left(5\frac{1}{3}+3\frac{2}{3}\right)-4\frac{1}{3}\)
\(=\left(5+3-4\right)+\left(\frac{1}{3}+\frac{2}{3}-\frac{1}{3}\right)\)
\(=4\frac{2}{3}\)
\(=\frac{14}{3}\)
a) \(-\frac{4}{9}\cdot\frac{1}{3}-\frac{4}{9}\cdot\frac{5}{6}+\frac{3}{7}\cdot\frac{4}{9}\)
\(=\left(-\frac{4}{9}\right)\cdot\frac{1}{3}+\left(-\frac{4}{9}\right)\cdot\frac{5}{6}-\left(-\frac{4}{9}\right)\cdot\frac{3}{7}\)
\(=\left(-\frac{4}{9}\right)\left(\frac{1}{3}+\frac{5}{6}-\frac{3}{7}\right)\)
\(=\left(-\frac{4}{9}\right)\cdot\frac{31}{42}=-\frac{62}{189}\)

A=4+(22+23+24+...+220)
A-4=22+23+24+...+220
2(A-4)=23+24+25+...+221
A-4=2(A-4)-(A-4)=(23+24+25+...+221)-(22+23+24+...+220)
A-4=(23-23)+(24-24)+(25-25)+...+(220-220)+(221-22)
A-4=221-4
A =221-4+4
A =221
Bạn làm tiếp nha .
Q = \(2^{3} + 4^{3} + 6^{3} + \ldots + 18^{3} + 20^{3}\).
Bước 1: Phân tích dữ kiện đã cho
Bạn cho:
\(1^{3} + 2^{3} + 3^{3} + \ldots + 9^{3} + 10^{3} = 3025\)
Đây là tổng lập phương các số từ 1 đến 10. Chúng ta biết công thức tổng lập phương từ 1 đến n là:
\(1^{3} + 2^{3} + \ldots + n^{3} = \left(\left(\right. \frac{n \left(\right. n + 1 \left.\right)}{2} \left.\right)\right)^{2}\)
Thử với \(n = 10\):
\(\left(\left(\right. \frac{10 \times 11}{2} \left.\right)\right)^{2} = \left(\right. 55 \left.\right)^{2} = 3025\)
Chính xác.
Bước 2: Tính tổng \(Q = 2^{3} + 4^{3} + 6^{3} + \ldots + 18^{3} + 20^{3}\)
Tổng này là tổng các lập phương của các số chẵn từ 2 đến 20.
Gọi:
\(Q = \sum_{k = 1}^{10} \left(\right. 2 k \left.\right)^{3}\)
Ta có:
\(Q = \sum_{k = 1}^{10} 8 k^{3} = 8 \sum_{k = 1}^{10} k^{3}\)
Mà \(\sum_{k = 1}^{10} k^{3} = 3025\) như trên.
Vậy:
\(Q = 8 \times 3025 = 24200\)
Kết luận:
\(\boxed{Q = 24200}\)
\(Q=2^3+4^3+6^3+\cdots+20^3\)
\(=2^3\left(1^3+2^3+3^3+\cdots+10^3\right)\)
\(=8\cdot3025=24200\)