K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

LG
9 tháng 8

Mà mình thấy nó bổ ích cho mình mà! :(

3 tháng 1 2016

chắc chưa tuyển được giáo viên

7 tháng 11 2016

Ta không thể áp dụng định lý Fermat nhỏ ngay được vì 2013 va 2016 không là hai số nguyên tố cùng nhau. Cô gợi ý một cách để có thể áp dụng định lý Fermat nhỏ:
\(2013^{2016}=\left(-3\right)^{2016}\left(mod2016\right)=3^{2016}\left(mod2016\right)\)
\(2016=2^5.3^2.7\).
Gọi x là số dư của \(3^{2016}\)khi chia cho 2016. Ta suy ra:
                                  .\(\hept{\begin{cases}3^{2016}=x\left(mod2^5\right)\\3^{2016}=x\left(mod3^2\right)\\3^{2016}=x\left(mod7\right)\end{cases}}\)
Nhận xét: \(3^8=1\left(mod2^5\right)\),\(3^6=1\left(mod7\right)\)\(3^{2016}=0\left(mod3^2\right)\). Do 2016 đều chia hết cho 8,6 nên:
                                  \(\hept{\begin{cases}3^{2016}=1\left(mod2^5\right)\\3^{2016}=1\left(mod7\right)\\3^{2016}=0\left(mod3^2\right)\end{cases}}\)
Như vậy: 
                                  \(\hept{\begin{cases}x=1\left(mod2^5\right)\\x=1\left(mod7\right)\\x=0\left(mod3^2\right)\end{cases}}\)
Từ đó suy ra : \(x-1=BC\left(2^5,7\right)\).và x chia hết cho 9, x < 2016.
Từ đó ta tìm được x = 225.
Đây là trường hợp đặc biệt nên ta áp dụng cách tìm bội chung của lớp 6 nếu giả sử rơi vào trường hợp sau:
  \(\hept{\begin{cases}x=5\left(mod2^5\right)\\x=6\left(mod7\right)\\x=2\left(mod3^2\right)\end{cases}}\)thì các bạn có thể áp dụng định lý số dư Trung Hoa.

3 tháng 11 2016

áp dụng "=] chả vại còn gì, trong trường hợp quá bí" ta có:

số chia là 2016 

Vì số dư nhỏ hơn số chia =2015

Xét 2015 trường hợp ta có:....

 
11 tháng 11 2019

\(M=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1\)

\(=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)

Đặt \(a^2+5a+4=t\)

\(\Rightarrow M=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2\) là số  chính phương

23 tháng 7 2022

 Spam Spam    SpamSpam SpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpam

SpamSpamSpamSpamSpamSpamSpamSpamSpam

4 tháng 9 2017

Cho mk làm lại:

\(\frac{A}{A^2-\left(A-1\right).\left(A+1\right)}=\frac{A}{A^2-A^2+A-A+1}=\frac{12345678}{1}=A\)

4 tháng 9 2017

Gọi 12345678 là A

Ta có:

12345678-12345677=1

Và 12345679-12345678=1

=>ta có biểu thức:

\(\frac{A}{A^2-\left(A-1\right).\left(A+1\right)}=\frac{A}{A^2-A^2-A+1}=\frac{A}{-A+1}=\frac{12345678}{-12345678+1}=-1\frac{1}{12345677}\)