K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: AE⊥BD

CF⊥BD

Do đó: AE//CF

Xét ΔADE vuông tại E và ΔCBF vuông tại F có

AD=CB

\(\hat{ADE}=\hat{CBF}\) (hai góc so le trong, AD//BC)

Do đó: ΔADE=ΔCBF

=>AE=CF

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB(Hai cạnh đối của hình bình hành ABCD)

\(\widehat{D}=\widehat{B}\)(Hai góc đối của hình bình hành ABCD)

Do đó: ΔAED=ΔCFB(cạnh huyền-góc nhọn)

Suy ra: AE=CF(Hai cạnh tương ứng) và ED=FB(hai cạnh tương ứng)

Ta có: ED+EC=DC(E nằm giữa D và C)

FB+FA=AB(F nằm giữa A và B)

mà AB=DC(Hai cạnh đối của hình bình hành ABCD)

và ED=FB(cmt)

nên EC=FA

Xét tứ giác ECFA có 

EC=FA(cmt)

EA=CF(cmt)

Do đó: ECFA là hình bình hành(Dấu hiệu nhận biết hình bình hành)

9 tháng 7 2018

Vì ABCD là hình bình hành

=> + AB = DC

       AB // DC  => góc ABE = góc FCD  ( sole trong )

+     AD= BC

     AD // BC

+) Xét \(\Delta AEB\)và \(\Delta CFD\)có :

\(AB=CD\left(cmt\right)\)

\(\widehat{AEB}=\widehat{CFD}=90^o\)(gt )

\(\widehat{ABE}=\widehat{FCD}\)(cmt)

Do đó : tam giác vuông AEB = tam giác vuông CFD ( cạnh huyền - góc nhọn )

\(\Rightarrow AE=FC\)( cặp cạnh tương ứng )               (1)

+)  vÌ \(\hept{\begin{cases}AE\perp DB\\FC\perp DB\end{cases}}\)

=> AE // FC  (2)

Từ (1) và (2)

=>  AECF là hình bình hành ( đpcm )

    

9 tháng 7 2018

A B C D E F

Hình hơi xấu nha ^^

17 tháng 9 2020

a) ABCD là hình bình hành => AD=BC, AD//BC

--->Dễ dàng có được \(\Delta AED=\Delta CFB\left(c.g.c\right)\Rightarrow AE=CF\)

Mà AE//CF (cùng vuông góc BD) => AECF là hình bình hành.

b) AHDK không thể là hình bình hành nha --> phải là AHCK

Chứng minh: AH//CK (cùng vuông góc BD)

CH//AK (vì ABCD là hình bình hành)

=> AHCK là hình bình hành

12 tháng 8 2017

bạn đã tìm ra lời giải  chưa chỉ mình với nhanh nhanh nha mình sắp nộp bài rồi cảm ơn

a: AE\(\perp\)BD

CF\(\perp\)BD

Do đó: AE//CF

Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

=>AE=CF

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: AE//CF

E\(\in\)AH

F\(\in\)CK

Do đó: AH//CK

AB//CD

K\(\in\)AB

H\(\in\)CD

Do đó: AK//CH

Xét tứ giác AHCK có

AH//CK

AK//CH

Do đó: AHCK là hình bình hành

=>AC cắt HK tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,HK,BD đồng quy

1 tháng 11 2017


a. 
xét 2 tam giác ABD và CBD có các cặp cạnh tương ứng bằng nhau( vì hình bình hành) 
=>tgiac ABD = tgiac CBD 
=> đường cao AE = CF( đường cao tương ứng cũng bằng nhau) (1) 
ta lại có:AE vuong goc với BD, CF vuong góc với BD => AE //CF (2) 
từ 1 và 2 => AECF là hình bình hành 
b. 
xét 2 tam giác AID và tam giác CBK 
có BC = AD( cạnh hbh) (1) 
góc ADC = góc CBA ( 2 góc đối hbh) (2) 
gọi: 
M là giao điểm của CK và AD 
N là giao điểm của AI và BC 
ta có ANCM là hbh vì có các cặp cạnh song song với nhau 
=> góc BCM = góc NAD (3) 
từ 1,2 và 3 => tam giác BCK = tgiác DAI ( goc - canh -goc) 
=> AI = CK (cpcm) 
c. 
xét 2 tam giác vuông ABE và CDF 
ta có: 
AB = CD ( 2 cạnh đối hbh ABCD) 
AE = CF (2 cạnh đối hbh AECF) 
=> tgiác ABE = tgiác CDF 
=> BE =CF (dpcm)

30 tháng 10 2019

ai giúp mk vs mình câu b thôi]

27 tháng 2 2020
  • Trường Tiểu học Bến Thủy - Thành phố Vinh
  • bonus16.png Xuất sắc (100 điểm): 0 | star.png Điểm hỏi đáp: 0