K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

a)Xét\(\Delta\)AMB và \(\Delta ANC\) có:\(\widehat{A}\):chung

\(\widehat{AMB}=\widehat{ANC}=90\)0

=>\(\Delta AMB\sim\Delta ANC\)(g.g)

b)Vì \(\Delta AMB\sim\Delta ANC\)

\(\Rightarrow\)\(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)

\(\Rightarrow\) \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Xét \(\Delta AMN\)\(\Delta ABC\) có:

\(\widehat{A}:chung\)

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(cmt\right)\)

\(\Rightarrow\Delta AMN\sim\Delta ABC\left(c.g.c\right)\)

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Đề bạn bị lỗi, viết câu đọc rất khó hiểu. Bạn cần viết lại đề để được hỗ trợ tốt hơn!

15 tháng 3 2021

a/ Xét \(\Delta HAC\) và \(\Delta ABC\) có

\(\widehat{BAH}=\widehat{ACH}\) (Vì cùng phụ với \(\widehat{HAC}\) ) => \(\Delta BAH\) đồng dạng với \(\Delta ABC\)

\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\Rightarrow AH.BC=AB.AC\left(dpcm\right)\)

b/ Ta có

\(HK=CK;HI=AI\) => KI là đường trung bìcuarHHAC tg HAC => KI//AC\(\Rightarrow\widehat{HKI}=\widehat{BCA}\)

Xét tg vuông HKI và tg vuông ABC có

\(\widehat{HKI}=\widehat{BAC}\left(cmt\right)\) => tg HKI đồng dạng với tg ABC

a: Xét ΔAMN và ΔACB có

\(\widehat{AMN}=\widehat{ACB}\)

\(\widehat{MAN}\) chung

Do đó: ΔAMN~ΔACB

b: Ta có: ΔAMN~ΔACB

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

=>\(\dfrac{AM}{AN}=\dfrac{AC}{AB}\)

Xét ΔAMC và ΔANB có

\(\dfrac{AM}{AN}=\dfrac{AC}{AB}\)

\(\widehat{MAC}\) chung

Do đó: ΔAMC~ΔANB

c: Sửa đề: Gọi O là giao điểm của BN với CM

Ta có: ΔABN~ΔACM

=>\(\widehat{ABN}=\widehat{ACM}\)

Xét ΔOBM và ΔOCN có

\(\widehat{OBM}=\widehat{OCN}\)

\(\widehat{BOM}=\widehat{CON}\)(hai góc đối đỉnh)

Do đó: ΔOBM~ΔOCN

=>\(\dfrac{OB}{OC}=\dfrac{OM}{ON}\)

=>\(\dfrac{OB}{OM}=\dfrac{OC}{ON}\)

Xét ΔOBC và ΔOMN có

\(\dfrac{OB}{OM}=\dfrac{OC}{ON}\)

\(\widehat{BOC}=\widehat{MON}\)(hai góc đối đỉnh)

Do đó: ΔOBC~ΔOMN

  bài 1:cho tứ giác ABCD có AC =BD dựng ra phía ngoài các tam giác cân đồng dạng AMB và CND cân lần lượt tại M và N, gọi E, I là trung điểm AD,BC.CMR MN vuông góc vs IEbài 2:cho hình vuông ABCD. Trên AB, BC lấy M,N sao cho BM=BN, kẻ BH vuông góc CM. CMR: DH vuông góc HNbài 3:cho hình thang ABCD (AB//CD) gọi E đối xứng vs D qua B, gọi M, N là trung điểm của AB, CD. Đường thẳng EM cắt AD tại K, đường thẳng EN cắt...
Đọc tiếp

 

 

bài 1:cho tứ giác ABCD có AC =BD dựng ra phía ngoài các tam giác cân đồng dạng AMB và CND cân lần lượt tại M và N, gọi E, I là trung điểm AD,BC.CMR MN vuông góc vs IE

bài 2:cho hình vuông ABCD. Trên AB, BC lấy M,N sao cho BM=BN, kẻ BH vuông góc CM. CMR: DH vuông góc HN

bài 3:cho hình thang ABCD (AB//CD) gọi E đối xứng vs D qua B, gọi M, N là trung điểm của AB, CD. Đường thẳng EM cắt AD tại K, đường thẳng EN cắt BC tại I. CMR:KI//CD

bài 4: cho hình chữ nhật ABCD. Kẻ AH vuông góc BD. Lấy M,N thuộc BH và DC sao cho BM/MH =CN/ND.CMR:góc AMN = 90 độ

bài 5:cho tam giác ABC đều. Một đường song song AC cắt AB và BC theo thứ tự tại I và J, gọi K là trung điểm AJ và O là trọng tâm tam giac BIJ. Tính các góc tam giác OKC

anh chị nào thông minh giải hộ em mấy bài này với, em hứa là sẽ có hoa hồng cho anh chị.

0
9 tháng 4 2019

1,

xét tam giác abc có góc bac=90o

theo đlí pitago có

\(bc=\sqrt{ab^2+ac^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

lại có bd là p/g của tam giác abc

=>\(\frac{dc}{da}=\frac{bc}{ba}\Leftrightarrow\frac{dc}{dc+da}=\frac{bc}{bc+ba}\Leftrightarrow\frac{dc}{8}=\frac{10}{10+6}\Rightarrow dc=\frac{10.8}{16}=5\left(cm\right)\left(\text{tính chất tỉ lệ thức} \right)\)

=>ad=ac-dc=8-5=3(cm)

2,

\(\text{xét tam giác abc và tam giác hba có}\)

\(\widehat{bac}=\widehat{bha}=90^o\left(gt\right)\)

\(\widehat{b}chung\)

=> tam giác abc đồng dạng tam giác hba(gg)