K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8

Để so sánh hai số \(�\)\(�\) dựa trên các bất đẳng thức đã cho, chúng ta sẽ giải từng bất đẳng thức một.

1) Giải bất đẳng thức \(� - \left(\right. - 4 \left.\right) \leq � + 4\)

Bất đẳng thức này có thể được viết lại như sau:

\(� + 4 \leq � + 4\)

Trừ \(4\) từ cả hai bên, ta có:

\(� \leq �\)

2) Giải bất đẳng thức \(3 - \left(\right. - � \left.\right) > � + 3\)

Bất đẳng thức này có thể được viết lại như sau:

\(3 + � > � + 3\)

Trừ \(3\) từ cả hai bên, ta có:

\(� > �\)

Kết luận

Từ hai bất đẳng thức trên, chúng ta có:

  1. \(� \leq �\)
  2. \(� > �\)

Hai điều kiện này mâu thuẫn với nhau, vì không thể cùng lúc có \(� \leq �\)\(� > �\).


7 tháng 8

1)

a-(-4)\(\le\) b+4

a+4\(\le\)b+4

Suy ra a\(\le\)b.

2)

3-(-a)>b+3

3+a>b+3

Suy ra a>b.

3 tháng 8 2017

1. ĐK \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

a. Ta có \(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right).\left(\frac{1}{\sqrt{x}+2}+\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

b. Với \(x=4+2\sqrt{3}\Rightarrow R=\frac{\sqrt{4+2\sqrt{3}}+2}{\sqrt{4+2\sqrt{3}}\left(\sqrt{4+2\sqrt{3}}-2\right)}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}-2\right)}\)

\(=\frac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+3}{3-1}=\frac{\sqrt{3}+3}{2}\)

c. Để \(R>0\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)

Vậy \(x>4\)thì \(R>0\)

2. Ta có \(A=6+2\sqrt{2}=6+\sqrt{8};B=9=6+3=6+\sqrt{9}\)

Vì \(\sqrt{8}< \sqrt{9}\Rightarrow A< B\)

3. a. \(VT=\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)=a-b=VP\left(đpcm\right)\)

b. Ta có \(VT=\left(2+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right).\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)

\(=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)=4-a=VP\left(đpcm\right)\)

21 tháng 6 2019

1/ Bình phương hai vế, ta cần chứng minh \(a+b+2\sqrt{ab}>a+b\Leftrightarrow2\sqrt{ab}>0\)

Mà ta có \(2\sqrt{ab}\ge0\text{ Nhưng theo đề bài dấu "=" không xảy ra nên ta có đpcm. }\)

7 tháng 9 2015

1, \(VT=\left(\sqrt{a+b}\right)^2=a+b\)

VP=\(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)

(vì a,b<0 => ab>0 => \(\sqrt{ab}>0\)

=> \(\sqrt{a+b}<\sqrt{a}+\sqrt{b}\)

1 tháng 12 2016

A=2^2013-1

VÀ B=2^2013

=> A<B

1 tháng 12 2016

Sao ra được vậy bạn,làm chi tiết giùm mình vs

3 tháng 8 2018

a)Ta có:  \(2\sqrt{5}< 5\sqrt{2}\)\(2\sqrt{5}=\sqrt{2^2.5}=\sqrt{20}\)

\(5\sqrt{2}=\sqrt{5^2.2}=\sqrt{50}\)

Vì \(\sqrt{20}< \sqrt{50}\)

Nên \(2\sqrt{5}< 5\sqrt{2}\)

b)Ta có: \(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)

\(4\sqrt{11}=\sqrt{4^2.11}=\sqrt{176}\)

Vì \(\sqrt{117}< \sqrt{176}\)

Nên \(3\sqrt{13}< 4\sqrt{11}\)

c) Ta có: \(\frac{3}{4}.\sqrt{7}=\sqrt{\left(\frac{3}{4}\right)^2.7}=\sqrt{\frac{63}{16}}\)

\(\frac{2}{5}.\sqrt{5}=\sqrt{\left(\frac{2}{5}\right)^2.5}=\sqrt{\frac{4}{5}}\)

Vì \(\sqrt{\frac{63}{16}}>1\)

\(\sqrt{\frac{4}{5}}< 1\)

Nên \(\sqrt{\frac{63}{16}}>\sqrt{\frac{4}{5}}\)

Vậy \(\frac{3}{4}.\sqrt{7}>\frac{2}{5}.\sqrt{5}\)

10 tháng 8 2020

a)

Có: \(1+2\sqrt{2}=1+\sqrt{8}< 1+\sqrt{9}=1+3=4\)

Vậy \(4>1+2\sqrt{2}\)

b) Có: \(2\sqrt{6}-1=\sqrt{24}-1< \sqrt{25}-1=5-1=4\)

Vậy \(4>2\sqrt{6}-1\)

c) Có: \(3\sqrt{3}=\sqrt{27}< \sqrt{28}=2\sqrt{7}\) 

=> \(3\sqrt{3}< 2\sqrt{7}\)

=> \(-3\sqrt{3}>-2\sqrt{7}\)

8 tháng 11 2018

\(a^2+b^2=2ab\)

<=>  \(a^2+b^2-2ab=0\)

<=>  \(\left(a-b\right)^2=0\)

<=>   \(a-b=0\)

<=>  \(a=b\)  (đpcm)

8 tháng 11 2018

\(a^3+b^3+c^3=3abc\)

<=>  \(a^3+b^3+c^3-3abc=0\)

<=>  \(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

<=>   \(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

<=>  \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=>  \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

Xét:  \(a^2+b^2+c^2-ab-bc-ca=0\)

<=>  \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

<=>  \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=>  \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)

<=>  \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)

<=>  \(a=b=c\)

=>  đpcm

14 tháng 7 2019

#)Giải :

Ta có : \(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)

\(=4a^2b^2-\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)\)

\(=4a^2b^2-a^4-b^4-c^4-2a^2b^2+2b^2c^2+2c^2a^2\)

\(=2a^2b^2-a^4-b^4-c^4+2b^2c^2+2c^2a^2\)

\(=-a^4+2a^2b^2-b^4-c^2+2b^2c^2+2c^2a^2\)

\(=-\left(a^2-b^2\right)^2-c^4+2b^2c^2+2c^2c^2\)

\(=-\left(a^2-b^2\right)^2-c\left(c^2-2b^2+2a^2\right)>0\)

\(\Rightarrow A>0\left(đpcm\right)\)

14 tháng 7 2019

\(A=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)

=>\(A=\left(a+b-c\right)\left(a+b+c\right)\left(c-a+b\right)\left(a-b+c\right)\)

do a,b,c la do dai 3 canh tam giac => A>0=>dpcm

26 tháng 5 2015

b) 

\(A=\frac{x+2xy+y-4xy}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}=\sqrt{x}-\sqrt{y}\)

\(B=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}=\sqrt{x}+\sqrt{y}\)