
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


x3+9x2+27x+27=x3+3.x2.3+3.x.32+33=(x+3)3
thay x=97 vào (x+3)3 ta được:
(97+3)3=1003=1000000
vậy x3+9x2+27x+27=1000000 tại x=97

x3-3x2+3x-1=x3-3x2.1+3x.12-13
=(x-1)3
thay x=101 ta được:
(101-1)3=1003=1000000
x3+9x2+27x+27=x3+3x2.3+3.x.32+33
=(x+3)3
thay x=97 ta được:
(97+3)3=1003=1000000
x^3-3x^2+3x-1
x^3+9x^2+27x+27
=x^3+3*x^2*3+3*x*3^2+3^3
=(x+3)^3
thayx=97 ta duoc :(97+3)^3=100^3=1000000

a) x2 - y2 = ( x+y )( x-y )
Thay x = 87 và y = 13 vào biểu thức a) ta có :
( 87+13 )( 87-13 ) = 100.74 = 7400

\(65,x^3+8=\left(x+3\right)\left(x^2-3x+4\right)\)
\(87,x^3+9x^2+27x+27\)
\(=\left(x+3\right)^3\)
\(97,125-75m+15m^2-m^3\)
\(=\left(5-m\right)^3\)

b: \(x^3+\dfrac{1}{27}=\left(x+\dfrac{1}{3}\right)\left(x^2-\dfrac{1}{3}x+\dfrac{1}{9}\right)\)
c: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
e: \(a^2y^2-2axby+b^2x^2\)
\(=\left(ay\right)^2-2\cdot ay\cdot bx+\left(bx\right)^2\)
\(=\left(ay-bx\right)^2\)
f: \(100-\left(3x-y\right)^2\)
\(=\left(10-3x+y\right)\left(10+3x-y\right)\)
g: \(64x^2-\left(8a+b\right)^2\)
\(=\left(8x\right)^2-\left(8a+b\right)^2\)
\(=\left(8x-8a-b\right)\left(8x+8a+b\right)\)

\(a,x^2-y^2=\left(x+y\right)\left(x-y\right)=\left(87+13\right)\left(87-13\right)=100.74=7400\)\(b,x^3-3x^2+3x-1=\left(x-1\right)^3=\left(101-1\right)^3=100^3=1000000\)c,\(x^3+9x^2+27x+27=\left(x+3\right)^3=\left(97+3\right)^3=1000000\)
a) x2 - y2 = (x+y)(x-y)
Thay x=87; y=13 có:
(87+13)(87-13) = 100.74 = 7400
b)x3-3x2+3x-1 = x3 - 3x2.1+ 3x .12 -13 = (x-1)3
Thay x=101 có:
(101-1)3 =1003 =1000000
c)x3+9x2+27x+27= x3 +3x2.1+3x.12+33= (x+3)3
Thay x=97 có:
(97+3)3= 1003=1000000

Bài 1:
\(a,27x^3+27x^2+9x+1\)
\(=\left(3x\right)^3+3.\left(3x\right)^2.1+3.3x.1^2+1^3\)
\(=\left(3x+1\right)^3\)
\(b,x^3+3\sqrt{2}x^2y+6xy^2+2\sqrt{2}y^3\)
\(=x^3+3.x^2.\sqrt{2}y+3.x.\left(\sqrt{2}y\right)^2+\left(\sqrt{2}y\right)^3\)
\(=\left(x+\sqrt{2}y\right)^3\)
Bài 2:
\(a,x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(b,\left(x+1\right)^3-x\left(x-2\right)^2+x-1=0\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3-4x^2+4x+x-1=0\)
\(\Leftrightarrow-x^2+8x=0\)
\(\Leftrightarrow-x\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
1)
a) = (3x+1)3
b) (x+\(\sqrt{2}\) )3
2)
a)\(x^3+9x^2+27x+27=0\\ \left(x+3\right)^3=0\\ =>x=-3\)
b) Bài cuối bạn tự làm nhé! Mình mắc học bài
# Chúc bạn học tốt !

\(-x^3+9x^2-27x+27\)
\(=-\left(x^3-9x^2+27x-27\right)\)
\(=-\left(x-3\right)^3\)

B= x3 - 3.x2.3 + 3.x.32 - 33 = (x-3)3 (áp dụng hằng đẳng thức số 5 )
thay x = 13 vào biểu thức trên ta được B= (13-3)3 =103 =1000
Ta có
\(B=x^3-9x^2+27x-27=\left(x-3\right)^3\)
Thay x=13 vào B ta được
(13-3)3=103=1000
Vậy x=13 thì B nhận giá trị là 1000
Ta có biểu thức:
A = x³ + 9x² + 27x + 27
Thử phân tích:
A = x³ + 9x² + 27x + 27
= x³ + 3×3x² + 3×9x + 27
= x³ + 3x²·3 + 3x·9 + 27
Nhận ra đây chính là hằng đẳng thức:
A = (x + 3)³
Vì: (x + 3)³ = x³ + 3x²·3 + 3x·3² + 3³ = x³ + 9x² + 27x + 27
Với x = 97 ⇒ x + 3 = 100
Vậy:
A = (x + 3)³ = 100³ = 1 000 000
Đáp số: A = 1 000 000
Cho mình xin 1 tick với ạ.
A=x3+9x2+27x+27
,x=97
\(= \left(\right. 97 + 3 \left.\right)^{3}\)
\(= 100^{3}\)
\(= 1000000\)