Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) M chia hết cho 7 là rõ ràng vì các số hạng của M đều là lũy thừa của 7
\(M=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{59}+7^{60}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{59}\left(1+7\right)\)
\(=7.8+7^3.8+...+7^{59}.8\)
\(=\left(7+7^3+...+7^{59}\right).8\)
=> M cũng chia hết cho 9
Làm tương tự, để chứng minh M chia hết cho 50 thì ta nhóm số thứ nhất với số thứ ba,, số thứ hai với số thứ tư, số thứ ba với số thứ năm, v.v.
\(M=\left(7+7^3\right)+\left(7^2+7^4\right)+...+\left(7^{57}+7^{59}\right)+\left(7^{58}+7^{60}\right)\)
\(=7\left(1+7^2\right)+7^2\left(1+7^2\right)+...+7^{57}\left(1+7^2\right)+7^{58}\left(1+7^2\right)\)
\(=7.50+7^2.50+...+7^{57}.50+7^{58}.50\)
\(=\left(7+7^2+...+7^{57}+7^{58}\right).50\)
=> M cũng chia hết cho 50
b) Rút gọn M.
\(M=7+7^2+...+7^{59}+7^{60}\) (1)
=> Chia cả hai vế cho 7 ta có:
\(\frac{M}{7}=1+7+7^2+...+7^{59}\) (2)
Lấy (1) trừ cho (2) vế với vế và bỏ đi các thành phần triệt tiêu ta có:
\(M-\frac{M}{7}=7^{60}-1\)
\(\Rightarrow\frac{6}{7}M=7^{60}-1\)
\(\Rightarrow M=\frac{\left(7^{60}-1\right).7}{6}\)

Ta có:
\(\frac{a}{b}=\frac{a\times\left(b+m\right)}{b\times\left(b+m\right)}=\frac{a\times b+a\times m}{b\times b+b\times m}\)
\(\frac{a+m}{b+m}=\frac{\left(a+m\right)\times b}{\left(b+m\right)\times b}=\frac{a\times b+m\times b}{b\times b+b\times m}\)
vì \(\frac{a}{b}>1\) nên \(a>b\), ta suy ra \(a\times m>b\times m\)
hay \(a\times b+a\times m>a\times b+m\times b\)
hay \(\frac{a\times b+a\times m}{b\times b+b\times m}>\frac{a\times b+m\times b}{b\times b+b\times m}\)
hay \(\frac{a}{b}>\frac{a+m}{b+m}\)
Vì \(\frac{a}{b}>1\)
=> a > b
=> a.m > b.m
=> a.m + a.b > b.m + a.b
=> a.(b + m) > b.(a + m)
=> \(\frac{a}{b}>\frac{a+m}{b+m}\)
Khoa học tự nhiên ∉ M
Mỹ thuật ∈ M
\(toideptraui\)