K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(C=2^2+2^3+\cdots+2^{199}+2^{200}\)

=>\(2C=2^3+2^4+\cdots+2^{200}+2^{201}\)

=>\(2C-C=2^3+2^4+\cdots+2^{200}+2^{201}-2^2-2^3-\cdots-2^{199}-2^{200}\)

=>\(C=2^{201}-2^2=2^{201}-4\)

2 tháng 8

\(C=2^2+2^3+\ldots+2^{199}+2^{200}\)

\(2C=2^3+2^4+\ldots+2^{200}+2^{201}\)

\(2C-C=\left(2^3+2^4+\ldots+2^{199}+2^{201}\right)-\left(2^2+2^3+\ldots+2^{199}+2^{200}\right)\)

\(C=2^{201}-2^2\)

Vậy \(C=2^{201}-2^2\)

14 tháng 8 2017

a,   \(2^x-15=17\)

\(\Rightarrow2^x=17+15\)

\(\Rightarrow2^x=32\)

\(\Rightarrow2^x=2^5\)

\(\Rightarrow x=5\)

b,   \(\left(7x-11\right)^3=2^5.5^2+200\)

\(\Rightarrow\left(7x-11\right)^3=32.25+200\)

\(\Rightarrow\left(7x-11\right)^3=1000\)

\(\Rightarrow\left(7x-11\right)^3=10^3\)

\(\Rightarrow7x-11=10\)

\(\Rightarrow7x=10+11\)

\(\Rightarrow7x=21\)

\(\Rightarrow x=21:7\)

\(\Rightarrow x=3\)

c,   \(x^{10}=1^x\)

\(\Rightarrow x\in\left\{1;0\right\}\)

14 tháng 8 2017

\(2^x-15=17\)

\(\Rightarrow2^x=17+15\)

\(\Rightarrow2^x=32=2^4\)

\(\Rightarrow x=4\)

\(\left(7x-11\right)^3=2^5.5^2+200\)

Phần này mk ko bt làm đâu

\(x^{10}=1^x\)

\(\Rightarrow\)\(x^{10}=1\)

\(\Rightarrow x=1\)

8 tháng 9 2015

2^200+2^199+2^198=2^198*(2^2+2+1)=7*2^198 chia hết cho 7

8 tháng 9 2015

2200+2199+2198

=  2198.2 + 2198.21+2198.1

= 2198. ( 22+21+1 )

= 2198 .7

Vì 7 chia hết cho 7 nên dãy đó chia hết cho 7

26 tháng 5 2017

Ta có:

\(2^{3^{2^3}}=2^{3^8}=2^{6561}=2^{3.2187}=8^{2187}\)

\(3^{2^{3^2}}=3^{2^9}=3^{512}\)

Ta thấy \(8^{2187}>3^{512}\Rightarrow2^{3^{2^3}}>3^{2^{3^2}}\)

26 tháng 5 2017

\(2^{3^{2^3}}=2^{3^8}=2^{6561}\)

\(3^{2^{3^2}}=3^{2^9}=3^{512}\)

Tới đây mk chịu để mk suy nghĩ đã!

2= 4: 25

2x = (22)3 : 25

2x = 26 : 25

2x = 2

=> x = 1

18 tháng 9 2016

viết kiểu gì ko hiểu

13 tháng 7 2017

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

13 tháng 7 2017

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

18 tháng 10 2016

\(3^{n+2}-2^{n+2}+3^{n-2}=3^{n+2}-2^{n+2}+3^{n-2}\)

\(3^{n+2}-2^{n+2}+3^{n-2}=3^n.3^2-2^n.2^2+3^n:3^2=3^n.9-2^n.4+3^n:9\)

18 tháng 10 2016

dua bai nay len lop 12 , nguoi ta giải cho

17 giờ trước (9:02)

thanks bro ! :)

17 giờ trước (9:03)

tích cho mk đi bro


20 tháng 7 2017

k cho mình đi rồi mình giải cho

20 tháng 7 2017

Ta có: 

\(2^{3^{2^3}}=2^{3^8}=2^{6561}=2^{3.2187}=\left(2^3\right)^{2187}=8^{2187}\)

\(3^{2^{3^2}}=3^{2^9}=3^{512}\)

Vì: 8 > 3 và 2187 > 512

\(\Rightarrow8^{2187}>3^{512}\)

\(\Rightarrow2^{3^{2^3}}>3^{2^{3^2}}\)

Vậy: \(2^{3^{2^3}}>3^{2^{3^2}}\)