K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tại sao lại trước 2h chiều nay ạ?

Ta có: \(2\frac15x-\frac13x=\frac{56}{45}\)

=>\(\frac{11}{5}x-\frac13x=\frac{56}{45}\)

=>\(x\left(\frac{11}{5}-\frac13\right)=\frac{56}{45}\)

=>\(x\cdot\frac{33-5}{15}=\frac{56}{45}\)

=>\(x\cdot\frac{28}{15}=\frac{56}{45}\)

=>\(x=\frac{56}{45}:\frac{28}{15}=\frac{56}{45}\cdot\frac{15}{28}=\frac23\)

24 tháng 6 2021

Ta có : \(\hept{\begin{cases}\left|5-\frac{2}{3}x\right|\ge0\forall x\\\left|\frac{1}{7}y-3\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|5-\frac{2}{3}x\right|+\left|\frac{1}{7}y-3\right|\ge0\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}5-\frac{2}{3}x=0\\\frac{1}{7}y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{2}\\y=21\end{cases}}\)

b) Ta có \(\hept{\begin{cases}\left|5x+10\right|\ge0\forall x\\\left|6y-9\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|5x+10\right|+\left|6y-9\right|\ge0\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}5x+10=0\\6y-9=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1,5\end{cases}}\)

1 tháng 1 2021

a, \(\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow x=\frac{3}{4}-\frac{1}{2}=\frac{1}{4}\)Vậy \(x=\frac{1}{4}\)

b, \(\left|x+\frac{2}{3}\right|=\frac{5}{6}\)

TH1 : \(x+\frac{2}{3}=\frac{5}{6}\Leftrightarrow x=\frac{5}{6}-\frac{2}{3}=\frac{1}{6}\)

TH2 : \(x+\frac{2}{3}=-\frac{5}{6}\Leftrightarrow x=-\frac{5}{6}-\frac{2}{3}=\frac{-9}{6}=\frac{-3}{2}\)

Vậy \(x=\left\{\frac{1}{6};-\frac{3}{2}\right\}\)

1 tháng 1 2021

a,\(\frac{3}{4}-x=\frac{1}{2}\)

\(\Leftrightarrow x=\frac{3}{4}-\frac{1}{2}\)

\(\Leftrightarrow x=\frac{1}{4}\)

b,\(\left|x+\frac{2}{3}\right|=\frac{5}{6}\)

\(\Leftrightarrow x+\frac{2}{3}=\pm\frac{5}{6}\)

TH1:\(x+\frac{2}{3}=\frac{5}{6}\)

\(\Leftrightarrow x=\frac{5}{6}-\frac{2}{3}\)

\(\Leftrightarrow x=\frac{1}{6}\)

TH2:\(x+\frac{2}{3}=-\frac{5}{6}\)

\(\Leftrightarrow x=-\frac{5}{6}-\frac{2}{3}\)

\(\Leftrightarrow x=-\frac{3}{2}\)

15 tháng 7 2016

a, f(x) = -1/4 - 3x2 - 9x3 + 7x4 + x5

g(x) = 2x2 - x5 + 54 - 1/4

10 tháng 4 2019

\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}=\frac{\left|x-2017\right|+2019}{\left|x-2017\right|+2019}-\frac{1}{\left|x-2017\right|+2019}\)

\(=1-\frac{1}{\left|x-2017\right|+2019}\)

A đạt giá trị nhỏ nhất <=> \(\frac{1}{\left|x-2017\right|+2019}\)Đạt giá trị lớn nhất <=> \(\left|x-2017\right|+2019\)Đạt giá trị bé nhất

Ta co:  \(\left|x-2017\right|\ge0,\forall x\)

<=> \(\left|x-2017\right|+2019\ge0+2019=2019\)

Do đó: \(\left|x-2017\right|+2019\)có giá trị nhỏ nhất là 2019 

'=" xảy ra <=> x-2017=0 <=> x=2017

Vậy min A=\(1-\frac{1}{2019}=\frac{2018}{2019}\)khi và chỉ khi  x=2017

10 tháng 4 2019

k mk nha!

thanks!

nhanha!!!

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{y+z-5}=\frac{y}{x+z+3}=\frac{z}{x+y+2}=\frac{x+y+z}{y+z-5+x+z+3+x+y+2}=\frac{x+y+z}{2x+2y+2z}=\frac12\)

=>\(\begin{cases}y+z-5=2x\\ x+z+3=2y\\ x+y+2=2z\end{cases}\Rightarrow\begin{cases}y+z=2x+5\\ y+z=2y-3\\ x+y=2z-2\end{cases}\)

\(\frac{x}{y+z-5}=\frac12\left(x+y+z\right)\)

=>\(\frac12\left(x+y+z\right)=\frac12\)

=>x+y+z=1

*Ta có: x+y+z=1

=>z+2z-2=1

=>3z-2=1

=>3z=3

=>z=1

*Ta có: x+y+z=1

=>y+2y-3=1

=>3y=4

=>\(y=\frac43\)

*Ta có: x+y+z=1

=>x+2x+5=1

=>3x+5=1

=>3x=-4

=>\(x=-\frac43\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{y+z-5}=\frac{y}{x+z+3}=\frac{z}{x+y+2}=\frac{x+y+z}{y+z-5+x+z+3+x+y+2}=\frac{x+y+z}{2x+2y+2z}=\frac12\)

=>\(\begin{cases}y+z-5=2x\\ x+z+3=2y\\ x+y+2=2z\end{cases}\Rightarrow\begin{cases}y+z=2x+5\\ y+z=2y-3\\ x+y=2z-2\end{cases}\)

\(\frac{x}{y+z-5}=\frac12\left(x+y+z\right)\)

=>\(\frac12\left(x+y+z\right)=\frac12\)

=>x+y+z=1

*Ta có: x+y+z=1

=>z+2z-2=1

=>3z-2=1

=>3z=3

=>z=1

*Ta có: x+y+z=1

=>y+2y-3=1

=>3y=4

=>\(y=\frac43\)

*Ta có: x+y+z=1

=>x+2x+5=1

=>3x+5=1

=>3x=-4

=>\(x=-\frac43\)

15 tháng 7 2017

a) \(\frac{x}{4}=\frac{16}{x^2}\)\(=>x^3=16.4\)\(=>x^3=64\)\(=>x=4\)

b) \(\frac{4}{3}:\frac{4}{5}=\frac{2}{3}.\left(\frac{1}{10}.x\right)\)\(=>\frac{4}{3}.\frac{5}{4}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}:\frac{2}{3}=\frac{1}{10}x\)\(=>\frac{5}{3}.\frac{3}{2}=\frac{1}{10}x\)\(=>\frac{5}{2}=\frac{1}{10}x\)\(=>x=\frac{5}{2}:\frac{1}{10}\)\(=>x=\frac{5}{2}.10\)\(=>x=25\)

vậy x=25

15 tháng 7 2017

1.

a) \(\frac{x}{4}=\frac{16}{x^2}\)

\(\Rightarrow x^3=64\)

\(\Rightarrow x^3=4^3\)

\(\Rightarrow x=4\)

b) \(1\frac{1}{3}:0,8=\frac{2}{3}.\left(0,1.x\right)\)

\(\frac{5}{3}=\frac{2}{3}.\frac{x}{10}\)

\(\frac{x}{10}=\frac{5}{2}\)

\(\Rightarrow x=\frac{5.10}{2}=25\)

2.

\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)

\(3A=1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)

\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)\)

\(2A=1-\frac{1}{3^{99}}< 1\)

\(\Rightarrow A=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)

31 tháng 3 2019

Chứng minh đa thức  P(x) = 2(x-3)^2 + 5    không có nghiệm nha mấy chế
Tui viết sai đề :v

31 tháng 3 2019

a) Ta có no của đa thức f(x) = 0

                        \(\Leftrightarrow\frac{3}{2}x-\frac{1}{4}=0\)

                        \(\Leftrightarrow\frac{3}{2}x=\frac{1}{4}\)

                       \(\Leftrightarrow x=\frac{1}{6}\)

Vậy no của đa thức f(x)=0 \(\Leftrightarrow x=\frac{1}{6}\)

b) Ta có no của đa thức g(x) = 0

                  \(\Leftrightarrow2x^2-x=0\)

                  \(\Leftrightarrow x.\left(2x-1\right)=0\)

               \(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)

Vậy no của đa thức g(x) = 0 \(\Leftrightarrow x\in\left\{0;\frac{1}{2}\right\}\)