Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(\hept{\begin{cases}\left|5-\frac{2}{3}x\right|\ge0\forall x\\\left|\frac{1}{7}y-3\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|5-\frac{2}{3}x\right|+\left|\frac{1}{7}y-3\right|\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}5-\frac{2}{3}x=0\\\frac{1}{7}y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{2}\\y=21\end{cases}}\)
b) Ta có \(\hept{\begin{cases}\left|5x+10\right|\ge0\forall x\\\left|6y-9\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|5x+10\right|+\left|6y-9\right|\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}5x+10=0\\6y-9=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1,5\end{cases}}\)

a, \(\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow x=\frac{3}{4}-\frac{1}{2}=\frac{1}{4}\)Vậy \(x=\frac{1}{4}\)
b, \(\left|x+\frac{2}{3}\right|=\frac{5}{6}\)
TH1 : \(x+\frac{2}{3}=\frac{5}{6}\Leftrightarrow x=\frac{5}{6}-\frac{2}{3}=\frac{1}{6}\)
TH2 : \(x+\frac{2}{3}=-\frac{5}{6}\Leftrightarrow x=-\frac{5}{6}-\frac{2}{3}=\frac{-9}{6}=\frac{-3}{2}\)
Vậy \(x=\left\{\frac{1}{6};-\frac{3}{2}\right\}\)
a,\(\frac{3}{4}-x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{3}{4}-\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{4}\)
b,\(\left|x+\frac{2}{3}\right|=\frac{5}{6}\)
\(\Leftrightarrow x+\frac{2}{3}=\pm\frac{5}{6}\)
TH1:\(x+\frac{2}{3}=\frac{5}{6}\)
\(\Leftrightarrow x=\frac{5}{6}-\frac{2}{3}\)
\(\Leftrightarrow x=\frac{1}{6}\)
TH2:\(x+\frac{2}{3}=-\frac{5}{6}\)
\(\Leftrightarrow x=-\frac{5}{6}-\frac{2}{3}\)
\(\Leftrightarrow x=-\frac{3}{2}\)

a, f(x) = -1/4 - 3x2 - 9x3 + 7x4 + x5
g(x) = 2x2 - x5 + 54 - 1/4

\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}=\frac{\left|x-2017\right|+2019}{\left|x-2017\right|+2019}-\frac{1}{\left|x-2017\right|+2019}\)
\(=1-\frac{1}{\left|x-2017\right|+2019}\)
A đạt giá trị nhỏ nhất <=> \(\frac{1}{\left|x-2017\right|+2019}\)Đạt giá trị lớn nhất <=> \(\left|x-2017\right|+2019\)Đạt giá trị bé nhất
Ta co: \(\left|x-2017\right|\ge0,\forall x\)
<=> \(\left|x-2017\right|+2019\ge0+2019=2019\)
Do đó: \(\left|x-2017\right|+2019\)có giá trị nhỏ nhất là 2019
'=" xảy ra <=> x-2017=0 <=> x=2017
Vậy min A=\(1-\frac{1}{2019}=\frac{2018}{2019}\)khi và chỉ khi x=2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{y+z-5}=\frac{y}{x+z+3}=\frac{z}{x+y+2}=\frac{x+y+z}{y+z-5+x+z+3+x+y+2}=\frac{x+y+z}{2x+2y+2z}=\frac12\)
=>\(\begin{cases}y+z-5=2x\\ x+z+3=2y\\ x+y+2=2z\end{cases}\Rightarrow\begin{cases}y+z=2x+5\\ y+z=2y-3\\ x+y=2z-2\end{cases}\)
\(\frac{x}{y+z-5}=\frac12\left(x+y+z\right)\)
=>\(\frac12\left(x+y+z\right)=\frac12\)
=>x+y+z=1
*Ta có: x+y+z=1
=>z+2z-2=1
=>3z-2=1
=>3z=3
=>z=1
*Ta có: x+y+z=1
=>y+2y-3=1
=>3y=4
=>\(y=\frac43\)
*Ta có: x+y+z=1
=>x+2x+5=1
=>3x+5=1
=>3x=-4
=>\(x=-\frac43\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{y+z-5}=\frac{y}{x+z+3}=\frac{z}{x+y+2}=\frac{x+y+z}{y+z-5+x+z+3+x+y+2}=\frac{x+y+z}{2x+2y+2z}=\frac12\)
=>\(\begin{cases}y+z-5=2x\\ x+z+3=2y\\ x+y+2=2z\end{cases}\Rightarrow\begin{cases}y+z=2x+5\\ y+z=2y-3\\ x+y=2z-2\end{cases}\)
\(\frac{x}{y+z-5}=\frac12\left(x+y+z\right)\)
=>\(\frac12\left(x+y+z\right)=\frac12\)
=>x+y+z=1
*Ta có: x+y+z=1
=>z+2z-2=1
=>3z-2=1
=>3z=3
=>z=1
*Ta có: x+y+z=1
=>y+2y-3=1
=>3y=4
=>\(y=\frac43\)
*Ta có: x+y+z=1
=>x+2x+5=1
=>3x+5=1
=>3x=-4
=>\(x=-\frac43\)

a) \(\frac{x}{4}=\frac{16}{x^2}\)\(=>x^3=16.4\)\(=>x^3=64\)\(=>x=4\)
b) \(\frac{4}{3}:\frac{4}{5}=\frac{2}{3}.\left(\frac{1}{10}.x\right)\)\(=>\frac{4}{3}.\frac{5}{4}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}:\frac{2}{3}=\frac{1}{10}x\)\(=>\frac{5}{3}.\frac{3}{2}=\frac{1}{10}x\)\(=>\frac{5}{2}=\frac{1}{10}x\)\(=>x=\frac{5}{2}:\frac{1}{10}\)\(=>x=\frac{5}{2}.10\)\(=>x=25\)
vậy x=25
1.
a) \(\frac{x}{4}=\frac{16}{x^2}\)
\(\Rightarrow x^3=64\)
\(\Rightarrow x^3=4^3\)
\(\Rightarrow x=4\)
b) \(1\frac{1}{3}:0,8=\frac{2}{3}.\left(0,1.x\right)\)
\(\frac{5}{3}=\frac{2}{3}.\frac{x}{10}\)
\(\frac{x}{10}=\frac{5}{2}\)
\(\Rightarrow x=\frac{5.10}{2}=25\)
2.
\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)
\(3A=1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)
\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)\)
\(2A=1-\frac{1}{3^{99}}< 1\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)

Chứng minh đa thức P(x) = 2(x-3)^2 + 5 không có nghiệm nha mấy chế
Tui viết sai đề :v
a) Ta có no của đa thức f(x) = 0
\(\Leftrightarrow\frac{3}{2}x-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{3}{2}x=\frac{1}{4}\)
\(\Leftrightarrow x=\frac{1}{6}\)
Vậy no của đa thức f(x)=0 \(\Leftrightarrow x=\frac{1}{6}\)
b) Ta có no của đa thức g(x) = 0
\(\Leftrightarrow2x^2-x=0\)
\(\Leftrightarrow x.\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
Vậy no của đa thức g(x) = 0 \(\Leftrightarrow x\in\left\{0;\frac{1}{2}\right\}\)
tại sao lại trước 2h chiều nay ạ?
Ta có: \(2\frac15x-\frac13x=\frac{56}{45}\)
=>\(\frac{11}{5}x-\frac13x=\frac{56}{45}\)
=>\(x\left(\frac{11}{5}-\frac13\right)=\frac{56}{45}\)
=>\(x\cdot\frac{33-5}{15}=\frac{56}{45}\)
=>\(x\cdot\frac{28}{15}=\frac{56}{45}\)
=>\(x=\frac{56}{45}:\frac{28}{15}=\frac{56}{45}\cdot\frac{15}{28}=\frac23\)