Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Không mất tính tổng quát,
Giả sử a<b
Ta có: ab=bc => c<b
Ta có: bc=cd => c<d
Ta có: cd=de => e<d
Ta có: de=ea => a>e
Ta có: ea=ab => a>b ( trái với giả sử)
Vậy a=b=c=d=e
=> ba=bc=cd=de=ea
e<a

bạn dùng tính chất đương phân giác rồi suy ra tỉ leejj bằng nhau
A D B C K I 1 1 2 1
a) Vì ABCD là hình bình hành ( GT )
\(\Rightarrow AD//BC\left(Tc\right)\)
\(\Rightarrow\widehat{KAI}=\widehat{AIB}\)( 2 góc so le trong )
Mà \(\widehat{KAI}=\widehat{BAI}\)( vì AI là phân giác của góc BAD )
\(\Rightarrow\widehat{AIB}=\widehat{BAI}\)
Xét \(\Delta ABI\)có : \(\widehat{AIB}=\widehat{BAI}\)
\(\Rightarrow\Delta ABI\) cân tại B ( Dấu hiệu nhận biết )
b) Ta có : CK là phân giác của góc DCI ( GT )
\(\Rightarrow\widehat{C_1}=\widehat{C_2}=\frac{\widehat{DCI}}{2}\left(1\right)\)
AI là phân giác của góc BAK ( GT )
\(\Rightarrow\widehat{BAI}=\widehat{A_1}=\frac{\widehat{BAK}}{2}\left(2\right)\)
Mà \(\widehat{BAK}=\widehat{DCI}\) ( ABCD là hình bình hành ) (3)
Từ ( 1 ) ,(2 ) ,( 3)
\(\Rightarrow\widehat{BAI}=\widehat{C_2}\)
Mà \(\widehat{BAI}=\widehat{BIA}\)( chứng minh trên)
\(\Rightarrow\widehat{BIA}=\widehat{C_2}\)
c) Bạn tự làm nốt nha !

a.vì tứ giác ABCD là hình bình hành
suy ra AB//CD, AB = CD
vì AB = CD mà M, N lần lượt là trung điểm AB, CD
suy ra AM = CN
mà AM//CN (M, N thuộc AB, CD) và AM = CN
\(\Rightarrow\) tứ giác AMCN là hình bình hành
b.MF//AE, M là trung điểm AB nên MF là đường trung bình của tam giác
Suy ra F là trung điểm của BE
c.vì AMCN là hình bình hành
suy ra AN//CM
xét tam giác ABE có
MF//AE, M là trung điểm AB
suy ra MF là đường trung bình của tam giác
suy ra F là trung điểm BE
chứng minh tương tự với tam giác CDF, ta được E là trung điểm DF
từ đó suy ra DE = EF = FB
a) Xét hình bình hành ABCD có:
AB=CD => AM=CN (1)
AB//CD => AM//CN (2)
Từ (1) và (2) => Tứ giác AMCN là hình bình hành (dấu hiệu 3)
b) Ta có: MF//AE (do CM//AN)
Xét tam giác BEA có:
MF//AE
AM=MB
=> MF là đường trung bình của tam giác BEA
=> EF=FB hay F là trung điểm của BE
c) Ta có: CF//NE (do CM//AN)
Xét tam giác DFC có:
DN=NC
CF//NE
=> NE là đường trung bình của tam giác DFC
=> DE=EF
mà EF=FB nên DE=EF=FB

a) Vì hình thang ABCD là 1 tứ giác
=> ^A+^B+^C+^D=360o
=> 100o+135o+^C+80o=360o
=> 315o+^C=360o
=> ^C=360o-315o
=> ^C=45o
Vậy ^C=45o
b) Ta có E trung điểm AD; EF//CD
=> EF là đường tb của hình thang ABCD
=> F là trung điểm BC
=> BF=FC (đpcm)
c) Vì EL _|_ CD; FG _|_ CD
=>EL//FG (1)
Mà: EF//DC ( EF là đường tb)
=> EF//LG (2)
Từ (1) và (2)=> EFGL là hình bình hành
Lại có: ^ELG=90o hoặc ^FGL (EL_|_CD);(FG_|_CD)
=> EFGL là hcn ( hbh có 1 góc _|_) (đpcm)
ABCD10013580E--FLG

a, Do ABCD là hình bình hành ( gt )
=> BAD + ADC = 180 độ ( t/c hbh )
Mà BAD = 120 độ ( gt ) => ADC = 60 độ
Gọi đường phân giác của góc ADC đi qua trung điểm cạnh AB là DI
=> ADI = CDI = 30 độ
Xét tam giác ADI có : DAI + ADI + AID = 180 độ ( tổng 3 góc của 1 tam giác )
=> AID = ADI = 30 độ => Tam giác AID cân
=> AI = AD mà AI = 1/2 AB => AD = 1/2 AB hay AB = 2.AD ( đpcm )
b, CM ADF đều
Do ABCD là hbh ( gt ) => AB = CD ( t/c hbh )
=> 1/2 AB = 1/2 CD => AI = BI = DF = CF
mà AI = AD => AD = DF
=> tam giác ADF cân tại D có góc ADF = 60 độ ( cmt )
=> ADF đều
CM AFC cân :
DO tam giác ADF đều ( cmt ) => AF = DF ( t/c tg đều )
mà DF = FC ( gt ) => AF = FC => tam giác AFC cân tại F ( đpcm )
c, Ta có : AF = DF = CF ( cmt )
=> AF = 1/2 ( DF +CF ) => AF = 1/2 CD
Xét tam giác ADC có AF là trung tuyến ứng với cạnh CD
và AF = 1/2CD
=> tam giác ADC vuông tại A ( dấu hiệu nhận biết tam giác vuông )
=> AD vuông góc với AD ( Đpcm )

a) FN là đường trung bình của tam giác ADC
\(\Rightarrow FN=\frac{AD}{2}\)
EM là đường trung bình của tam giác ADB
\(\Rightarrow EM=\frac{AD}{2}\)
NE là đường trung bình của tam giác ABC
\(\Rightarrow EN=\frac{CB}{2}\)
FM là đường trung bình của tam giác BDC
\(\Rightarrow FM=\frac{CB}{2}\)
Mà AD = BC (gt)
\(\Rightarrow FN=EM=EN=FM=\frac{AD}{2}=\frac{CB}{2}\)
\(\Rightarrow FN=EM=EN=FM\)
=> Tứ giác FNEM là hình thoi
b) FM là đường trung bình của tam giác BDC
\(\Rightarrow FM//BC\Leftrightarrow\widehat{DFM}=\widehat{DCB}=80^o\)
FN là đường trung bình của tam giác ADC
\(\Rightarrow FN//AD\Leftrightarrow\widehat{CFN}=\widehat{CDA}=40^o\)
Ta có \(\widehat{CFN}+\widehat{MFN}+\widehat{DFM}=180^o\)
\(\Leftrightarrow40^o+\widehat{MFN}+80^o=180^o\Leftrightarrow\widehat{MFN}=60^o\)

a) Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
Tương tự :
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế :
\(\Rightarrow2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a = b = c
Bài 20:
Xét tứ giác AHDK có \(\hat{AHD}=\hat{AKD}=\hat{HAK}=90^0\)
nên AHDK là hình chữ nhật
Hình chữ nhật AHDK có AD là phân giác của góc HAK
nên AHDK là hình vuông
Bài 19:
ΔABC vuông cân tại A
=>AB=AC và \(\hat{ABC}=\hat{ACB}=45^0\)
Xét ΔHDB vuông tại D và ΔGEC vuông tại E có
DB=EC
\(\hat{B}=\hat{C}\left(=45^0\right)\)
Do đó: ΔHDB=ΔGEC
=>HD=GE
Ta có: HD⊥BC
GE⊥BC
Do đó: HD//GE
Xét ΔHDB vuông tại D có \(\hat{DBH}=45^0\)
nên ΔHDB vuông cân tại D
=>DH=DB
mà DB=ED
nên DH=DE
Xét tứ giác GEDH có
GE//DH
GE=DH
Do đó: GEDH là hình bình hành
Hình bình hành GEDH có ED=DH
nên GEDH là hình thoi
Hình thoi GEDH có \(\hat{EDH}=90^0\)
nên GEDH là hình vuông
Bài 6:
a:Xét ΔABC có \(\hat{BAC}+\hat{ABC}+\hat{ACB}=180^0\)
=>\(\hat{ABC}=180^0-80^0-60^0=40^0\)
AD là phân giác của góc BAC
=>\(\hat{BAD}=\hat{CAD}=\frac12\cdot\hat{BAC}=\frac12\cdot80^0=40^0\)
Xét ΔDAB có \(\hat{DAB}=\hat{DBA}\left(=40^0\right)\)
nên ΔDAB cân tại D
b: ΔDAB cân tại D
mà DH là đường cao
nên H là trung điểm của AB
Xét tứ giác DBEA có
H là trung điểm chung của DE và BA
=>DBEA là hình bình hành
Hình bình hành DBEA có DB=DA
nên DBEA là hình thoi
Bài 5:
a: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM⊥BC tại M
Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
=>ABEC là hình bình hành
Hình bình hành ABEC có AB=AC
nên ABEC là hình thoi
b: Ta có: ABEC là hình thoi
=>CE=AB
mà BA=CD
nên CE=CD
=>C là trung điểm của DE
hi