K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 phút trước

Olm chào em, đề bài của em hiện đang bị thiếu, em nhé.

21 tháng 2 2017

Ta có : 2n + 3 chia hết cho n - 3

<=> 2n - 6 + 3 chai hết cho n - 3

=> 3 chai hết cho n - 3

=> n - 3 thuộc Ư(3) = {-3;-1;1;3}

Ta có bảng:

n - 3-3-113
n0246
21 tháng 2 2017

Bài này dữ liệu hơi sai sai

VD n bằng 4 thì số nào chả chia đc dúng ko

k mình nha

17 tháng 1 2018

Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé

a)    \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)

Để   \(\frac{3n-2}{n-3}\)nguyên  thì   \(\frac{7}{n-3}\)nguyên

hay     \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng sau:

\(n-3\)     \(-7\)               \(-1\)                   \(1\)                    \(7\)

\(n\)              \(-4\)                  \(2\)                    \(4\)                   \(10\)

Vậy....

\(a,n+9⋮n+2\)

\(\Rightarrow n+2+7⋮n+2\)

mà \(n+2⋮n+2\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(n\in\left\{-1;-3;5;-9\right\}\)

\(b,2n+7⋮n+1\)

\(\Rightarrow2n+2+5⋮n+1\)

\(\Rightarrow2\left(n+1\right)+5⋮n+1\)

mà \(2\left(n+1\right)⋮n+1\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

3 tháng 4 2017
  • A = 2+7+(-6)/-3
  • A= 3/-3
  • A=-1
  • Vậy số nguyên A cần tìm là -1
9 tháng 11 2016

a) hỢP số

 

 

9 tháng 11 2016

a/ A luôn là hợp số vì A luôn chia hết cho 3

b/ <=> 144 = \(\frac{\left(2n+1+1\right).}{2}\) x( \(\frac{\left(2n+1-1\right)}{2}\) +1)

<=> n = 11

23 giờ trước (14:50)

23 giờ trước (14:59)