
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


S=(1+2+⋯+100)(12+22+⋯+102)(65⋅111−13⋅15⋅17)
1+2 +⋯+100=2100⋅101=5050
1mũ 2+2 mũ 2+⋯+102=610⋅11⋅21=385
65⋅111−13⋅15⋅17=7215−3315=3900
S=5050⋅385⋅3900=7582575000
- Tổng từ 1 đến 100:
\(1 + 2 + \ldots + 100 = \frac{100 \times 101}{2} = 5050\)
- Tổng bình phương từ 1 đến 10:
\(1^{2} + 2^{2} + \ldots + 10^{2} = \frac{10 \times 11 \times 21}{6} = 385\)
- Tính phần trong ngoặc:
\(65 \times 111 = 7215\)\(13 \times 15 \times 17 = 195 \times 17 = 3315\)\(65 \times 111 - 13 \times 15 \times 17 = 7215 - 3315 = 3900\)
- Nhân tất cả:
\(S=5050\times385\times3900=7.582.575.000\)
Kết luận:
\(\boxed{S = 7.582.575.000}\)

\(1^3+2^3+3^3+\cdots+100^3\)
\(=\left(1+2+\cdots+100\right)^2\)
\(=\left(100\cdot\frac{101}{2}\right)^2=\left(50\cdot101\right)^2=5050^2=25502500\)

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

\(2^3\cdot17-2^3\cdot14\)
\(=2^3\left(17-14\right)\)
\(=8\cdot3=24\)

\(75-\left(3.5^2-4.2^3\right)\)
\(=75-\left(3.25-4.8\right)\)
\(=75-\left(75-32\right)\)
\(=75-43\)
\(=22\)

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

\(\left(x+2\right)^2=3\)
=>\(\left[\begin{array}{l}x+2=\sqrt3\\ x+2=-\sqrt3\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\sqrt3-2\\ x=-\sqrt3-2\end{array}\right.\)

Giải:
a) \(4^n:4=64\)
\(\Leftrightarrow4^{n-1}=64\)
\(\Leftrightarrow4^{n-1}=4^3\)
Vì \(4=4\)
Nên \(n-1=3\)
\(\Leftrightarrow n=4\)
b) \(7^5:7^n=49\)
\(\Leftrightarrow7^{5-n}=49\)
\(\Leftrightarrow7^{5-n}=7^2\)
Vì \(7=7\)
Nên \(5-n=2\)
\(\Leftrightarrow n=3\)
c) \(3^n=27\)
\(\Leftrightarrow3^n=3^3\)
Vì \(3=3\)
Nên \(n=3\)
d) \(11^n=121\)
\(\Leftrightarrow11^n=11^2\)
Vì \(11=11\)
Nên \(n=2\)
e) \(5.5^n=125\)
\(\Leftrightarrow5^{1+n}=125\)
\(\Leftrightarrow5^{1+n}=5^3\)
Vì \(5=5\)
Nên \(1+n=3\)
\(\Leftrightarrow n=2\)
g) \(4^n=64:4\)
\(\Leftrightarrow4^n=16\)
\(\Leftrightarrow4^n=4^2\)
Vì \(4=4\)
Nên \(n=2\)
Chúc bạn học tốt!
a) \(4^n\div4=64\)
\(\Rightarrow4^n=64\div4\)
\(\Rightarrow4^n=16\)
\(\Rightarrow4^n=4^2\)
\(\Rightarrow\) n = 2
b) \(7^5\div7^n=49\)
\(\Rightarrow7^5\div7^n=7^2\)
\(\Rightarrow7^n=7^5\div7^2\)
\(\Rightarrow7^n=7^3\)
\(\Rightarrow\) n = 3
c) \(3^n=27\)
\(\Rightarrow3^n=3^3\)
\(\Rightarrow\) n = 3
d) \(11^n=121\)
\(\Rightarrow11^n=11^2\)
\(\Rightarrow\) n = 2
e) \(5\times5^n=125\)
\(\Rightarrow5^n=125\div5\)
\(\Rightarrow5^n=25\)
\(\Rightarrow5^n=5^2\)
\(\Rightarrow\) n = 2
g) \(4^n=64\div4\)
\(\Rightarrow4^n=16\)
\(\Rightarrow4^n=4^2\)
\(\Rightarrow\) n = 2
\(n^2=4\)
\(\Rightarrow\left[\begin{array}{l}n=2\\ n=-2\end{array}\right.\)
vậy n=2 hoặc n=-2
đáp là 2 nhé bạn vì 2 mũ 2 = 4