
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Nếu x = y = z = t thì:
x4 + y4 + z4 + t4 = 4xyzt
=> x4 + x4 + x4 + x4 = 4xxxx
=> 4x4 = 4x4 ( đpcm )
Ta có:\(x^4+y^4+z^4+t^4=4xyzt\)
\(\Rightarrow\left(x^4-2x^2y^2+y^4\right)+\left(z^4-2z^2t^2+t^4\right)+2\left(x^2y^2-2xyzt+z^2t^2\right)=0\)
\(\Leftrightarrow\left(x^2-y^2\right)+\left(z^2-t^2\right)+2\left(x^2y^2-z^2t^2\right)=0\)
Mà x,y,z,t là các số nguyên dương nên x=y=z=t(đpcm)
đi

Cái nào là phân thức hoặc phân số bạn cho vô ngoặc đơn đi, như này dễ nhầm lắm

Có: \(\frac{a^2}{1-a}=\frac{a^2-1+1}{1-a}=\frac{a^2-1}{1-a}+\frac{1}{1-a}=-\left(a+1\right)+\frac{1}{1-a}\)
Suy ra:
\(\frac{a^2}{1-a}+\frac{b^2}{1-b}+\frac{1}{a+b}+a+b\)
\(=\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}+a+b-a-1-b-1\)
\(=\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}-2\).
Áp dụng bất đẳng thức: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)ta có:
\(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}\ge\frac{9}{1-a+1-b+a+b}=\frac{9}{2}\).
Suy ra: \(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}-2\ge\frac{9}{2}-2=\frac{5}{2}.\)
Vậy ta có đpcm.


\(A=\frac{1}{3589}.7\frac{1}{297}-3\frac{3588}{3589}.\frac{2}{297}-\frac{7}{3589}-\frac{3}{3589.297}\)
\(A=\frac{1}{3589}.\left(7+\frac{1}{297}\right)-\left(4-\frac{1}{3589}\right).2.\frac{1}{297}-7.\frac{1}{3589}-3.\frac{1}{3689}.\frac{1}{297}\)
\(A=7.\frac{1}{3689}+\frac{1}{3589}.\frac{1}{297}-8.\frac{1}{297}+2.\frac{1}{3589}.\frac{1}{297}-7.\frac{1}{3589}\)
\(A=-8.\frac{1}{297}\)
\(A=\frac{-8}{297}\)

Ta có
\(\hept{\begin{cases}x+y-xy=55\\x^2+y^2=325\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x+y\right)-2xy=110\\\left(x+y\right)^2-2xy=325\end{cases}}\)
Lấy dưới trừ trên vế theo vế ta được
(x + y)2 - 2(x + y) = 215
\(\Leftrightarrow\orbr{\begin{cases}x+y=1+6\sqrt{6}\\x+y=1-6\sqrt{6}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}xy=6\sqrt{6}-54\\xy=-6\sqrt{6}-54\end{cases}}\)
Ta lại có
Ta lại có
x3 - y3 = (x - y)(x2 + xy + y2) =
\(\sqrt{\left(x+y\right)^2-4xy}\left(x^2+xy+y^2\right)\)
Giờ chỉ việc thế số vô là có đáp án nhé

a, \(A=\frac{x-1}{x+1}=\frac{x+1-1-1}{x+1}=\frac{x+1-2}{x+1}=1-\frac{2}{x+1}\)
Để \(A\in z\) thì \(x+1\inƯ\left(2\right)=\left(-2;-1:1;2\right)\)
\(x+1=-2\Rightarrow x=-3\)
\(x+1=-1\Rightarrow x=-2\)
\(x+1=1\Rightarrow x=0\)
\(x+1=2\Rightarrow x=1\)
Vậy \(x=\left(-3;-2;0;1\right)\)thì \(A\in z\)
b, \(A=\frac{x+1}{x-2}=1+\frac{3}{x-2}\)
Để \(A\in z\)thì \(x-2\inƯ\left(3\right)=\left(-3;-1;1;3\right)\)
\(x-2=-3\Rightarrow x=-1\)
\(x-2=-1\Rightarrow x=1\)
\(x-2=1\Rightarrow x=3\)
\(x-2=3\Rightarrow x=5\)
Vậy \(x=\left(-1;1;3;5\right)\)thì \(A\in z\)
c, \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)\(ĐK:\)\(x\ge0;x\ne9\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để \(A\in z\)thì \(\sqrt{x}-3\inƯ\left(4\right)=\left(-4;-2;-1;1;2;4\right)\)
\(\sqrt{x}-3=-4\Rightarrow\sqrt{x}=-1VN\)
\(\sqrt{x}-3=-2\Rightarrow\sqrt{x}=1\Rightarrow x=1\)
\(\sqrt{x}-3=-1\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(\sqrt{x}-3=1\Rightarrow\sqrt{x}=4\Rightarrow x=16\)
\(\sqrt{x}-3=2\Rightarrow\sqrt{x}=5\Rightarrow x=25\)
\(\sqrt{x}-3=4\Rightarrow\sqrt{x}=7\Rightarrow x=49\)
Vậy \(x=\left(1;4;16;25;49\right)\)thì \(A\in z\)
d, \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}\) \(ĐK:\)\(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
Để \(A\in z\) thì \(\sqrt{x}-1\inƯ\left(2\right)=\left(-2;-1;1;2\right)\)
\(\sqrt{x}-1=-2\Rightarrow\sqrt{x}=-1VN\)
\(\sqrt{x}-1=-1\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
\(\sqrt{x}-1=1\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(\sqrt{x}-1=2\Rightarrow\sqrt{x}=3\Rightarrow x=9\)
Vậy \(x=\left(0,4,9\right)\)thì \(A\in z\)
\(a,A=\frac{x-1}{x+1}\)
Để \(A\in Z\)
\(\Rightarrow\frac{x-1}{x+1}\in Z\)
\(\Rightarrow\frac{x+1-2}{x+1}\in Z\)
\(\Rightarrow1-\frac{2}{x+1}\in Z\)
\(\Rightarrow\frac{2}{x+1}\in Z\)
\(\Rightarrow x+1\in U_{\left(2\right)}\)
\(\Rightarrow x+1=\left\{-2,-1,1,2\right\}\)
\(\Rightarrow x=\left\{-3,-2,0,1\right\}\)
Mày ngu