\(A B C\) (
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7

✱Vì \(A D\) là phân giác của góc \(A\) trong tam giác \(A B C\), nên theo tính chất đường phân giác, ta có:

AB​/AC = BD/DC

✳Kẻ đường thẳng vuông góc với \(A D\) tại điểm \(D\), cắt \(A B\) tại \(E\), cắt \(A C\) tại \(F\). Khi đó, ta có

\(D E \bot A D\)

\(D F \bot A D\),

⇒ 3 điểm \(E , D , F\) thẳng hàng và đường thẳng \(E F\) vuông góc với \(A D\).

✳Trên đoạn thẳng \(D C\), ta lấy điểm \(I\) sao cho:

\(D I = D B\)

✱Nên tam giác \(I D B\) là tam giác cân tại đỉnh \(D\)

⇒ ta có hai góc đáy bằng nhau: \(\angle I B D = \angle I D B\).

✳Xét hai tam giác \(A E I\)\(I B D\), ta thấyđường thẳng \(A E\)\(I B\) cùng tạo với đường thẳng \(E I\) hai góc bằng nhau (vì \(\angle A E I = \angle D B I\))

✱Mà hai góc so le trong bằng nhau nên hai đường thẳng đó song song

AE // IB

⇒ Tứ giác \(A E I B\) có hai cạnh đối song song là \(A E\)\(I B\), nên \(A E I B\) là hình thang.

15 tháng 5 2018

Không mất tính tổng quát,

Giả sử a<b 

Ta có: ab=bc => c<b 

Ta có: bc=cd => c<d 

Ta có: cd=de => e<d 

Ta có: de=ea => a>e 

Ta có: ea=ab => a>b ( trái với giả sử) 

Vậy a=b=c=d=e 

=> ba=bc=cd=de=ea 

               e<a 

              

        

10 tháng 8 2019

a,Xét \(\Delta\)AHB và AHD có:AH chung

                                   BH=HD(gt)

                                   AHB=AHD=90

vậy tam giác AHB= tam giác AHC

b,Tam giác ABD đều ms đúng chứ ạ bạn xem lại đề nha

Theo câu a ta có tam giác AHB =tam giác AHD nên AB=AD(2 cạnh tương ứng)

Xét tam giác ABD có AB=AD suy ra tam giác ABD cân mà góc ABD =60 độ(cái này bạn tự tính nha)

suy ra tam giác ABD đều

c,Dễ thấy được tam giác ADC cân tại D nên AD=DC

Xét tam giác AHD và tam giác CED có:

        AD=DC

        HDA=EDC(2 góc đối đỉnh)

        AHD=CED=90

nên tam giác AHD=tam giác CED(ch-gn)

suy ra HD=DE mà theo câu a tam giác AHB=AHD nên HD=HB

vậy HB=DE(đpcm)

d, I là giao điểm của CE và AH chứ bạn

Xét tam giác AIC có : AE vuông góc với IC

                                CH vuông góc với IA

                           mà CH cắt AE tại D

nên D là trực tâm của tam giác IAC

hay ID vuống góc với AC

mặt khác DF vuông góc với AC

nên I ,D,F thẳng hàng

Chúc bạn học tốt

a,Xét \(\Delta AHB\)và \(\Delta AHD\)

AH chung

HB=HD

\(\widehat{AHB}=\widehat{AHD}\left(=90^0\right)\)

=> \(\Delta AHB\)=\(\Delta AHD\)

b, xem lại đề

c, Vì \(\widehat{C}=30^0\Rightarrow\widehat{B}=30^0\Rightarrow\widehat{BAD}=60^0\)

\(\Rightarrow\widehat{DAC}=30^0\)

\(\Rightarrow\Delta DAC\)cân tại D

\(\Rightarrow DA=DC\)

Từ đó ta chứng minh được \(\Delta HAD=\Delta ECD\)

\(\Rightarrow HD=DE=BH\)(ĐPCM)

d,Xem lại đề

Chúc học tốt!!!!!! :)

19 tháng 8 2019

a) AEBF là hình thang vuôngvì EF là đường trung bình \(\Rightarrow EF//AB\)

b) Xét hai tam giác vuông ABK và EIK có góc EKI = góc AKB nên \(\Delta ABK\approx\Delta IEK\)

\(\Rightarrow\frac{AB}{BK}=\frac{EI}{EK}\)

c) Xét \(\Delta AKB=\Delta AKH\left(ch-gn\right)\)

+ AK chung

+ Góc BAK = góc HAK

Vậy BK = HK

Gọi giao điểm của HK và AK là P

Xét \(\Delta PBK=\Delta PHK\left(c.g.c\right)\)

+ PK Chung

+ BK = HK

+ Góc PKB = góc PKH 

Suy ra góc PBK = góc PHK 

Ta có 

\(\hept{\begin{cases}\widehat{PBK}+\widehat{ABP}=90^0\\\widehat{BAP}+\widehat{ABP}=90^0\end{cases}}\Rightarrow\widehat{PBK}=\widehat{BAP}=\widehat{IAF}\left(1\right)\)

\(\hept{\begin{cases}\widehat{EKI}=\widehat{PKB}=\widehat{PKH}\\\widehat{EIK}+\widehat{EKI}=90^0\end{cases}}\)

Mà \(\hept{\begin{cases}\widehat{PKH}+\widehat{PHK}=90^0\\\widehat{EIK}+\widehat{PKH}=90^0\end{cases}\Rightarrow}\widehat{BHK}=\widehat{EIK}\left(2\right)\)

Từ (1) và (2) ta có đpcm vì hai tam giác BKH và AFI đều là hai tam giác cân có hai góc ở đáy bằng nhau 

Nên hai tam giác trên đồng dạng

d)

a) Vì ABCD là hình thang 

=> BAD + ADC = 180° ( trong cùng phía )

Vì AI là phân giác BAD

=> BAI = DAI = \(\frac{1}{2}BAD\) 

Vì BI là phân giác ADC 

=> ADI = CDI = \(\frac{1}{2}ADC\)

=> \(\frac{1}{2}ADC\)\(\frac{1}{2}BAD\)= 90°

Xét ∆AID có : 

IAD + IDA + AID = 180° 

=> AID = 180° - 90° = 90° 

=> AI \(\perp\)DI 

Chứng minh tương tự ta có : 

BJ \(\perp\)IC 

6 tháng 10 2019

bạn dùng tính chất đương phân giác rồi suy ra tỉ leejj bằng nhau 

6 tháng 10 2019

A D B C K I 1 1 2 1

a) Vì ABCD là hình bình hành ( GT ) 

\(\Rightarrow AD//BC\left(Tc\right)\)

\(\Rightarrow\widehat{KAI}=\widehat{AIB}\)( 2 góc so le trong )

Mà \(\widehat{KAI}=\widehat{BAI}\)( vì AI là phân giác của góc BAD )

\(\Rightarrow\widehat{AIB}=\widehat{BAI}\)

Xét \(\Delta ABI\)có : \(\widehat{AIB}=\widehat{BAI}\)

\(\Rightarrow\Delta ABI\) cân tại B ( Dấu hiệu nhận biết ) 

b) Ta có : CK là phân giác của góc DCI ( GT )

\(\Rightarrow\widehat{C_1}=\widehat{C_2}=\frac{\widehat{DCI}}{2}\left(1\right)\)

AI là phân giác của góc BAK ( GT )

\(\Rightarrow\widehat{BAI}=\widehat{A_1}=\frac{\widehat{BAK}}{2}\left(2\right)\)

Mà \(\widehat{BAK}=\widehat{DCI}\) ( ABCD là hình bình hành ) (3)

Từ ( 1 ) ,(2 ) ,( 3)

\(\Rightarrow\widehat{BAI}=\widehat{C_2}\)

Mà \(\widehat{BAI}=\widehat{BIA}\)( chứng minh trên)

\(\Rightarrow\widehat{BIA}=\widehat{C_2}\)

c) Bạn tự làm nốt nha !