K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{99\cdot100}\)

\(=1-\frac12+\frac12-\frac13+\cdots+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

17 tháng 6

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\ldots+\frac{1}{99\cdot100}\)

\(=1-\frac12+\frac12-\frac13+\cdots+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

19 tháng 6 2015

\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}+\frac{1}{100\cdot101}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)

\(=1+1-\frac{1}{101}=2-\frac{1}{101}=1\frac{100}{101}=\frac{201}{101}\)

19 tháng 6 2015

=1+1/1-1/2+1/2-1/3+1/3-1/+1/4-1/5+...+1/99-1/100+1/100-1/101

=1+1-1/101

=201/101

DD
25 tháng 5 2021

b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)

\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)

Phương trình tương đương với: 

\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)

DD
25 tháng 5 2021

c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)

\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)

\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)

\(\Leftrightarrow x-2014=0\)

\(\Leftrightarrow x=2014\)

Đặt tổng là A 

Ta đi nhân 2 vế với 3

Làm đc tiếp chứ

Đây là kiến thức lớp 6 mà

2 tháng 2 2020

3A= 1.2.3 + 2.3.4 + 3.4.3 +...+ 99.100.3

3A= 1.2.(3-0)+2.3.(4-1)+ 3.4(5-2)+....+ 99.(101-98)

3A= ( 1.2.3+.2.3.4+3.4.5+...+ 99.100.101) - ( 0.1.2+ 1.2.3+ 2.3.4+...+ 98.99.100)

3A= 99.100.101 - 0.1.2

3A= 999900

A= 999900:3

A= 333300

CHÚC BN HỌC TỐT :))))))))))))

15 tháng 7 2017

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)

\(=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)

\(=\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}\right)+\left(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}\right)\)

Ta có:

\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}>\dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)

\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}>\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{25}{100}=\dfrac{1}{4}\)

\(\Rightarrow A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\) (1)

Lại có:

\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{25}{50}=\dfrac{1}{2}\)

\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}< \dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)

\(\Rightarrow A< \dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\) (2)

Từ (1) và (2) suy ra \(\dfrac{7}{12}< A< \dfrac{5}{6}\)

1 tháng 7 2015

\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

Do \(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{100}\Rightarrow A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>25\cdot\frac{1}{80}+25\cdot\frac{1}{100}=\frac{7}{12}\)

và \(A<10\cdot\frac{1}{50}+10\cdot\frac{1}{60}+...+10\cdot\frac{1}{90}=\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}=\frac{1879}{2520}<\frac{5}{6}\)

Vậy 7/12<A<5/6

1 tháng 7 2015

olm lag kinh đang làm lag thoát ra mất tiêu

-------đề đúng------------

8 tháng 3 2017

1/2!+1/3!+...+1/100!<1/1*2+1/2*3+1/3*4+...+1/99*100

1-1/100<1

27 tháng 10 2015

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{99.100}\)

\(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)

\(2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)\)

\(2.\left(1-\frac{1}{100}\right)\)

\(2.\frac{99}{100}\)

\(\frac{99}{50}\)

11 tháng 6 2015

khó quá                    

11 tháng 6 2015

a, (1 - 1/2 ) .(1-1/3 ) ....(1-1/100) + x = 11/5 

 <=>1/2.2/3......99/100 +x = 11/5 => 1/100 + x = 11/5 => x = 2, 19

b