K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5

đừng dùng chat gbt nx

làm ơn

😤😤😤

ĐKXĐ: x>0; x<>1

a: \(A=\left(\frac{x\cdot\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\cdot\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{2\left(x-2\sqrt{x}+1\right)}{x-1}\)

\(=\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\frac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\left(x+\sqrt{x}+1-x+\sqrt{x}-1\right):\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{\sqrt{x}-1}\)

b: Để A<0 thì \(\frac{x+\sqrt{x}}{\sqrt{x}-1}<0\)

=>\(\sqrt{x}-1<0\)

=>\(\sqrt{x}<1\)

=>0<x<1

c: Để A nguyên thì \(x+\sqrt{x}\)\(\sqrt{x}-1\)

=>\(x-\sqrt{x}+2\sqrt{x}-2+2\)\(\sqrt{x}-1\)

=>2⋮\(\sqrt{x}-1\)

=>\(\sqrt{x}-1\in\left\lbrace1;-1;2;-2\right\rbrace\)

=>\(\sqrt{x}\in\left\lbrace0;2;3;-1\right\rbrace\)

=>\(\sqrt{x}\in\left\lbrace0;2;3\right\rbrace\)

=>x∈{0;4;9}

Kết hợp ĐKXĐ, ta được: x∈{4;9}

a: Diện tích ban đầu là \(8\cdot20=160\left(m^2\right)\)

Độ dài cạnh góc vuông thứ nhất của phần bị thu hồi là

20-2x(m)

Độ dài cạnh góc vuông thứ hai của phần bị thu hồi là:

8-x(m)

Diện tích phần bị thu hồi là:

\(T=\frac12\left(20-2x\right)\left(8-x\right)=\frac12\left(2x-20\right)\left(x-8\right)=\left(x-10\right)\left(x-8\right)\left(m^2\right)\)

b: Diện tích đất bị thu hồi là 455:13=35(m)

=>(x-10)(x-8)=35

=>\(x^2-18x+80-35=0\)

=>\(x^2-18x+45=0\)

=>(x-3)(x-15)=0

=>\(\left[\begin{array}{l}x-3=0\\ x-15=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3\left(nhận\right)\\ x=15\left(loại\right)\end{array}\right.\)

Vậy: x=3

Câu 5:

AB=1,6+25=26,6(m)

Ta có: \(\hat{xAC}=\hat{ACB}\) (hai góc so le trong, Ax//BC)

\(\hat{xAC}=38^0\)

nên \(\hat{ACB}=38^0\)

Xét ΔABC vuông tại B có tan ACB\(=\frac{AB}{BC}\)

=>\(BC=\frac{AB}{\tan ACB}=\frac{26.6}{\tan38}\) ≃34,0(m)

=>Chiếc xe cách chân tòa nhà khoảng 34m


Câu 7:

Xét tứ giác AHBD có \(\hat{AHB}=\hat{ADB}=\hat{DBH}=90^0\)

nênAHBD là hình chữ nhật

=>HB=AD=68(m)

Xét ΔAHD vuông tại H có \(\tan HAB=\frac{HB}{AH}\)

=>\(AH=\frac{HB}{\tan HAB}=\frac{68}{\tan28}\) ≃127,89(m)

Xét ΔAHC vuông tại H có \(\tan HAC=\frac{HC}{HA}\)

=>\(HC=HA\cdot\tan HAC=127,89\cdot\tan43\) ≃119,26(m)

BC=BH+CH=68+119,26≃187,3(m)


a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=36+64=100=10^2\)

=>BC=10(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-37^0=53^0\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(1\right)\)

Xét ΔABD vuông tại A có AK là đường cao

nên \(BK\cdot BD=BA^2\left(2\right)\)

Từ (1),(2) suy ra \(BH\cdot BC=BK\cdot BD\)

c: \(BH\cdot BC=BD\cdot BK\)

=>\(\frac{BH}{BK}=\frac{BD}{BC}\)

=>\(\frac{BH}{BD}=\frac{BK}{BC}\)

Xét ΔBHK và ΔBDC có

\(\frac{BH}{BD}=\frac{BK}{BC}\)

góc HBK chung

Do đó: ΔBHK~ΔBDC
=>\(\hat{BKH}=\hat{BCD}=\hat{ACB}\)

22 tháng 8

dạ mình cần giúp ý cuối cùng ạ:<

a: ta có: AH⊥CD
OM⊥CD

BK⊥CD

Do đó: AH//OM//BK

Xét ΔAKB có

O là trung điểm của AB

ON//KB

DO đó: N là trung điểm của AK

=>AN=NK

b: Xét hình thang ABKH có

O là trung điểm của AB

OM//AH//BK

Do đó: M là trung điểm của HK

=>MH=MK

c: ΔOCD cân tại O

mà OM là đường cao

nên M là trung điểm của CD

Ta có: MC+CH=MH

MD+DK=MK

mà MC=MD và MH=MK

nên CH=DK