Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

xét hiệu: \(\frac{a+b}{2}-\sqrt{ab}\), ta được
\(\frac{a+b}{2}-\sqrt{ab}=\)\(\frac{a+b-2\sqrt{ab}}{2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\)
do \((\sqrt{a}-\sqrt{b})^2\ge0\)với mọi x, y nên \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\)
dấu "=" xảy ra khi a=b
phải có cả điều kiện là x,y không âm nữa bạn nhé
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
Dấu "=" xảy ra khi a=b

bn lên mạng hoặc vào câu hỏi tương tự nha!
chúc bn hok tốt!
hahaha!
#conmeo#

toán lớp 1 ư ????????????????????????????????????
A!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Ap dung bdt AM-GM cho 2 so ko am A,B ta co
\(\sqrt{A}+\sqrt{B}\)\(\le\)\(2\sqrt{\frac{A+B}{2}}\)
VP =\(\sqrt{AB}.\left(\sqrt{A}+\sqrt{B}\right)\le\frac{A+B}{2}.2\sqrt{\frac{A+B}{2}}\)
=>VP2 \(\le4.\frac{\left(A+B\right)^3}{4}=\left(A+B\right)^3\left(3\right)\)
Tu (2),(3) => DPCM

đổi ẩn
\(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};z\right)\)\(\Rightarrow\)\(x+y+z=3\)
\(P=\Sigma\frac{1}{\sqrt{xy+x+y}}\ge\Sigma\frac{2\sqrt{3}}{xy+x+y+3}\ge\frac{18\sqrt{3}}{\frac{\left(x+y+z\right)^2}{3}+2\left(x+y+z\right)+9}=\sqrt{3}\)
dấuu "=" xảy ra khi \(a=b=c=1\)
Toán lớp 1??
Ai tin