
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ta có: 2xx=3y=>x/3=y/2=>x/21=y/14 ; x/7=z/5=>x/21=z/15 =>x/21=y/14=z/15=>3x/63=7y/98=5z/75 ADTCDTSBN ta có 3x/63=7y/98=5z /75=3x-7y+5z=40/63-98+75=40=1 3x=1.63=63 =>x=21 ;7y=1.98=98=>y=14 ; 5z=1.75=>z=15

\(\frac{5x-3y}{5}=\frac{3y-4z}{3}=\frac{4z-5x}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{5x-3y}{5}=\frac{3y-4z}{3}=\frac{4z-5x}{4}=\frac{5x-3y+3y-4z+4z-5x}{5+3+4}=\frac{0}{12}=0\)
\(\Rightarrow\frac{5x-3y}{5}=0\Rightarrow5x-3y=0\Rightarrow5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{20}\)
\(\frac{3y-4z}{3}=0\Rightarrow3y-4z=0\Rightarrow4z=3y\Rightarrow\frac{z}{3}=\frac{y}{4}\Rightarrow\frac{z}{15}=\frac{y}{20}\)
\(\Rightarrow\frac{x}{12}=\frac{y}{20}=\frac{z}{15}\)
đpcm
Tham khảo nhé~

b) Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+3y+1+5y+1+7y}{12+5x+4x}=\frac{3+15y}{12+5x+4x}=\frac{3\left(1+5y\right)}{2.3.2+5x+4x}=\frac{1+5y}{4+9x}=\frac{1+5y}{5x}\)<=> 4 + 9x = 5x
....
a/ Từ giả thiêt ta có \(\frac{x-9}{15}=\frac{y-12}{20}=\frac{z-24}{40}\Leftrightarrow\frac{x}{15}-\frac{3}{5}=\frac{y}{20}-\frac{3}{5}=\frac{z}{40}-\frac{3}{5}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{40}\). Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{40}=k\)
\(\Rightarrow\begin{cases}x=15k\\y=20k\\z=40k\end{cases}\)
Theo đề bài : \(xy=1200\Leftrightarrow15k.20k=1200\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)
Tới đây dễ rồi nhé :)
b/ \(\frac{1+5y}{5x}=\frac{1+7y}{4x}\Leftrightarrow\frac{1+5y}{5}=\frac{1+7y}{4}\Leftrightarrow\frac{7+35y}{35}=\frac{5+35y}{20}=\frac{7+35y-5-35y}{35-20}=\frac{2}{15}\)
\(\Rightarrow y=-\frac{1}{15}\)
Thay y vào \(\frac{1+3y}{12}=\frac{1+5y}{5x}\) tìm được x = 2

1/ so sánh
a) 812 và 128
Ta có: \(8^{12}=\left(8^3\right)^4=512^4\\ 12^8=\left(12^2\right)^4=144^4\)
vì 5124>1444 nên 812>128
b) (0,4)60và (-0,8)30
Gọi A= (0,4)60 và B= (-0,8)30
\(\Rightarrow\frac{A}{B}=\frac{\left(0,4\right)^{60}}{\left(-0,8\right)^{30}}=\frac{\left(0,1.2^2\right)^{60}}{\left(0,1.2^3\right)^{30}}=\frac{0,1^{60}.2^{120}}{0,1^{30}.2^{90}}=0,1^{30}.2^{30}=0,2^{30}>1\\ \Rightarrow A< B\)
e)\(A=\frac{20^{15}+1}{20^{16}+1}vàB=\frac{20^{16}+1}{20^{17}+1}\\ 20.A=20.\frac{20^{15}+1}{20^{16}+1}=\frac{20^{16}+20}{20^{16}+1}=\frac{20^{16}+1+19}{20^{16}+1}=\frac{20^{16}+1}{20^{16}+1}+\frac{19}{20^{16}+1}=1+\frac{19}{20^{16}+1}\left(1\right)\)
\(20.B=20.\frac{20^{16}+1}{20^{17}+1}=\frac{20^{17}+20}{20^{17}+1}=\frac{20^{17}+1+19}{20^{17}+1}=\frac{20^{17}+1}{20^{17}+1}+\frac{19}{20^{17}+1}=1+\frac{19}{20^{17}+1}\left(2\right)\)
Từ (1) và (2) ⇒ A>B

Ta có :
\(\frac{x-20}{19}=\frac{y+35}{20}=\frac{z-15}{37}\left(1\right)\)
\(\frac{x-3}{2}+\frac{5x-6}{9}=1\left(2\right)\)
Giải phương trình 2 ,ta có :
\(\frac{19x-39}{18}=1\)
\(19x-39=18\)
\(19x=57\)
\(x=3\)
Thay x = 3 vào phương trình 1 ,ta có :
\(\frac{x-20}{19}=\frac{y+35}{20}=\frac{z-15}{37}\)
\(\frac{3-20}{19}=\frac{y+35}{20}=\frac{z-15}{37}\)
\(\frac{y-35}{20}=\frac{z-15}{37}=\frac{-17}{19}\)
\(\Rightarrow\hept{\begin{cases}\frac{y-35}{20}=\frac{-17}{19}\\\frac{z-15}{37}=\frac{-17}{19}\end{cases}}\Rightarrow\hept{\begin{cases}y=\frac{325}{19}\\z=\frac{-344}{19}\end{cases}}\)

b: Ta có: x/y=7/9
nên x/7=y/9
=>x/49=y/63
Ta có: y/z=7/3
nên y/7=z/3
=>y/63=z/27
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{49}=\dfrac{y}{63}=\dfrac{z}{27}=\dfrac{x-y+z}{49-63+27}=\dfrac{-15}{13}\)
Do đó: x=-735/13; y=-945/13; z=-405/13
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)
Do đó: x=14; y=40; z=64
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)
Do đó: x=24; y=15; z=6


a,-12(x-5)+7(3-x)=20
-12x+60+21-7x=20
-19x=-61
x=\(\frac{61}{19}\)
b,30(x+1)-3(x-5)-15x=25
30x+30+15-3x-15x=25
12x=-20
x=\(-\frac{20}{12}\)

a) Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}\Leftrightarrow\left(x-1\right).4=\left(y+3\right).2\Leftrightarrow4x-4=2y+6\Leftrightarrow4x-2y=10\Leftrightarrow x=\frac{10+2y}{4}\left(1\right)\)
\(\frac{y+3}{4}=\frac{z-5}{6}\Leftrightarrow\left(y+3\right).6=\left(z-5\right).4\Leftrightarrow6y+18=4z-20\Leftrightarrow6y-4z=-38\Rightarrow z=\frac{6y+38}{4}\left(2\right)\)Thay (1) và (2) vào biểu thức \(5x-3y-4z=20\); ta được :
\(\frac{5.\left(10+2y\right)}{4}-3y-\frac{4.\left(6y+38\right)}{4}=20\)
\(\Leftrightarrow50+10y-12y-24y-152=80\)
\(\Leftrightarrow-26y=182\Rightarrow y=-7\)
Với \(y=-7\Rightarrow x=\frac{10+2.-7}{4}=-1;z=\frac{6.-7+38}{4}=-1\)
Vậy ....

a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)
=> 2x + 7 = 4
2x = 4 - 7
2x = -3
x = -3 : 2
x = -1,5
Vậy x = -1,5
5x=20+12
5x=32
x=32:5=6,4
5x-12=20
5x=20+12
5x=32
x=32:5
x=6.4