Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để xác định số dư của phép chia số A cho 2, ta cần biết giá trị của A. Theo đề bài, A = m^2 + m + 3n, với m là một số nguyên và n là một số tự nhiên. Để xác định số dư của A khi chia cho 2, ta có thể xét các trường hợp: 1. Nếu m là số chẵn, thì m^2 cũng là số chẵn. Khi cộng thêm m và 3n, tổng này vẫn là số chẵn. Do đó, số dư của A khi chia cho 2 là 0. 2. Nếu m là số lẻ, thì m^2 cũng là số lẻ. Khi cộng thêm m và 3n, tổng này có thể là số chẵn hoặc số lẻ tùy thuộc vào giá trị của n. Do đó, số dư của A khi chia cho 2 có thể là 0 hoặc 1. Vậy, số dư của phép chia số A cho 2 có thể là 0 hoặc 1, tùy thuộc vào giá trị của m và n.

a bằng số dư của phép chia N cho 2 .
=> a = 1
=> abcd có dạng 1bcd.
e thuộc số dư của phép chia N cho 6.
=> e thuộc 0,1,2,3,4,5 mà d bằng số dư của phép chia N cho 5 .
=> d,e thuộc 00,11,22,33,44,05.
c thuộc số dư của phép chia N cho 4.
=> c,d,e thuộc 000,311,222,133,044,105.
=> a,b,c,d,e có dạng là 1b000,1b311,1b222,1b333,1b044,1b105.
Vì b bằng số dư của phép chia N cho 3
=> a+c+d+e chia hết cho 3 .
=> Chọn được số 1b311,1b044.
Ta được các số là : 10311,11311,12311,10044,11044,12044.

a bằng số dư của phép chia N cho 2
=>a=1
=>abcd có dạng 1bcd
e thuộc số dư của phép N cho 6
=>e thuộc 0.1.2.3.4.5 mà d bằng số dư của phép chia N cho 5
=> d,e thuộc 00.11.22.33.44.05
c bằng số dư của phép chia N cho 4
=>c,d,e thuộc 000.311.222.133.044.105
=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105
vì b bằng số dư của phép chia N cho 3
=>a+c+d+e chia hết cho 3
=> chọn được số 1b311.1b044
Ta được các số là : 10311.11311.12311.10044.11044.12044

=>a=1 a bằng số dư của phép chia N cho 2
e bằng số dư của phép chia N cho 6
=>e thuộc 0,1,2,3,4,5
mà d bằng số dư của phép chia N cho 5
=>de thuộc 00,11,22,33,44,05
c bằng số dư của phép chia N cho 4
=>cde thuộc 000,311,222,133,044,105
=>abcde có dạng là 1b000,1b311,1b222,1b133,1b044,1b105
vì b bằng số dư của phép chia N cho 3
=>a+c+d+e chia hết cho 3
=>chọn được số 1b311,1b044
ta được các số là 10311,11311,12311,10044,11044,12044
nhớ chọn cho mình nha cảm ơn nhiều

a)
Tổng 17 số đầu tiên là
(6x1-3)+(6x2-3)+....+(6x17-3)
=6(1+2+3+...+17)-3x17
=6x153-17
=867
b)
Tích 100 số hạng bất kì là
(6m−3)[6(m+1)−3].......[6((m+99)−3)] (6m−3)[6(m+1)−3].......[6((m+99)−3)]
=3(2m−1)3[2(m+1)+1]......3[2(m+99)+1] =3(2m−1)3[2(m+1)+1]......3[2(m+99)+1]
=3 100 (2m−1)[2(m+1)−1].......[2(m+99)−1] =3100(2m−1)[2(m+1)−1].......[2(m+99)−1]
chia hết cho 399
Vậy tích 100 số bất kì của dãy chia hết cho 399
Nghi vấn Nobi Nobita tự hỏi tự trả lời.
Nobi Nobita và ♚Nguyễn ♛ Trấn ♜ Thành ♝ là 1.
Thứ 1: tôi thấy tất cả những câu của ♚Nguyễn ♛ Trấn ♜ Thành ♝ đều có dấu chân trả lời của Nobi nobita."cái này đã nghi rồi"
Thứ 2. thời gian trả lời đó chỉ mất 1 đến 2 phút "không thể nào".
Thứ 3: ♚Nguyễn ♛ Trấn ♜ Thành ♝ rất hay tick cho nobita. "quá nhiều dấu vết gian lận"
Lấy đâu ra kiểu công bằng đấy hả.
Ngoại lệ: trên hoc24 có quá nhiều trường hợp "hỏi tự trả lời", không phải xa lạ gì nữa, vậy càng có khả năng Nobi nobita gian lận thi cử.
nhưng mà số chia đâu bn
hung nè