
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


x2+4x-21 = x2 +7x-3x-21=x(x+7)-3(x+7)=(x-3)(x+7)
Nghiệm của pt là x=3 hoặc x = -7
mk ko chắc lắm mình ghi kết quả nha :)
\(-\sqrt{33}-2\)
\(\sqrt{33}-2\)
mk ko chắc lắm :)

a) x2+5x=0
=>x(x+5)=0
=> x=0 hoặc x+5=0
=>x=0 hoặc x=-5
b) 3x2-4x=0
=>x(3x-4)=0
=>x=0 hoặc 3x-4=0
=.x=0 hoặc x=4/3
c)5x5+10x=0
=>x(5x4+10)=0
=> Ta có 5x4+10>0 nên x=0
d)x3+27=0
=> x3=-27
=>x=-3
a/ \(x^2+5x=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}}\)
Các câu sau bạn cứ giải tương tự

\(E=5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x+105\)
\(=\left(5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x\right)+105\)
\(=5x\left(x^6+2x^5-4x^4-7x^3+4x^2-x+8\right)+105\)
Thay \(x^6+2x^5-4x^4-7x^3+4x^2-x+8=0\)vào đa thức ta được:
\(E=5x.0+105=105\)

a)\(4x^2-7x-2=0\Leftrightarrow4x^2+x-8x-2=0\Leftrightarrow x\left(4x+1\right)-2\left(4x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\4x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-\frac{1}{4}\end{array}\right.\)
b)\(3x^2+10x+3=0\Leftrightarrow3x^2+9x+x+3=0\Leftrightarrow3x\left(x+3\right)+\left(x+3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+3\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3x+1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{3}\\x=-3\end{array}\right.\)
c)\(x^2-x-20=0\Leftrightarrow x^2+4x-5x-20=0\Leftrightarrow x\left(x+4\right)-5\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+4\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x-5=0\\x+4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=5\\x=-4\end{array}\right.\)
d)\(6x^2+7x-3=0\Leftrightarrow6x^2-2x+9x-3=0\Leftrightarrow2x\left(3x-1\right)+3\left(3x-1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3x-1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+3=0\\3x-1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=\frac{1}{3}\end{array}\right.\)
e)\(10x^2-14x-12=0\Leftrightarrow2\left(5x^2-7x-6\right)=0\Leftrightarrow5x^2-7x-6=0\)
\(\Leftrightarrow5x^2+3x-10x-6=0\Leftrightarrow x\left(5x+3\right)-2\left(5x+3\right)=0\Leftrightarrow\left(x-2\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\5x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-\frac{3}{5}\end{array}\right.\)

Sửa đề : \(M\left(x\right)=-10x^4+2-x^2\)
Đặt \(x^2=t\left(t\ge0\right)\)
Suy ra : \(-10t^2+2-t=0\)
\(\left(-2t-1\right)\left(5t-2\right)=0\)
\(t=-\frac{1}{2};t=\frac{2}{5}\)
Với \(t=-\frac{1}{2}\Rightarrow x^2=-\frac{1}{2}\left(voli\right)\)
Với \(t=\frac{2}{5}\Rightarrow x^2=\frac{2}{5}\Rightarrow x=\frac{\sqrt{10}}{5}\)

Với x = 0
Ta có: 5.0+10.02 = 0
Với x = -\(\dfrac{1}{2}\)
Ta có: 5.(-\(\dfrac{1}{2}\)) + 10.(-\(\dfrac{1}{2}\))2 = 0
Vậy x = 0, x = -\(\dfrac{1}{2}\) là nghiệm của đa thức 5x+10x2
Đặt A(x)=5x+10x2
Ta có :
x=0 thì A(0)=5.0+10.02=0
x=-\(\dfrac{1}{2}\) thì A(\(-\dfrac{1}{2}\))=5.\(-\dfrac{1}{2}\)+10.(\(-\dfrac{1}{2}\))2=0
Vậy x=0 và x=\(-\dfrac{1}{2}\) là nghiệm của đa thức 5x+10x2

\(-2x^2-8x+2=0\)
\(< =>-\left(\left(\sqrt{2}x\right)+2.\sqrt{2}x.\frac{4}{\sqrt{2}}+8\right)+8+2=0\)
\(< =>\sqrt{10}^2-\left(\sqrt{2}x+8\right)^2=0\)
\(< =>\left(\sqrt{10}-\sqrt{2}x-8\right)\left(\sqrt{10}+\sqrt{2}x+8\right)=0\)
\(< =>\orbr{\begin{cases}-\sqrt{2}x=8-\sqrt{10}\\\sqrt{2}x=-8-\sqrt{10}\end{cases}< =>\orbr{\begin{cases}x=\frac{\sqrt{10}-8}{\sqrt{2}}\\x=\frac{-\sqrt{10}-8}{\sqrt{2}}\end{cases}}}\)
thì bằng 34567
\(-10x^2-4x+2=0\)
=>\(5x^2+2x-1=0\)
\(\text{Δ}=2^2-4\cdot5\cdot\left(-1\right)=4+20=24>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{24}}{2\cdot5}=\dfrac{-2-2\sqrt{6}}{10}=\dfrac{-1-\sqrt{6}}{5}\\x=\dfrac{-2+\sqrt{24}}{2\cdot5}=\dfrac{-2+2\sqrt{6}}{10}=\dfrac{-1+\sqrt{6}}{5}\end{matrix}\right.\)