Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

F= 21x8 - 24x6 + 9x5 + 3x3 + 6x2 + 2006
= 3x2( 7x6 - 8x4 + 3x3 + x +2) +2006
= 0 + 2006
= 0

a và b chắc của lớp 9 nhỉ
\(x^2-2x+2=x^2-x-x+2\)
\(=x\left(x-1\right)-\left(x-1\right)+1\)
\(=\left(x-1\right)^2+1\)
\(9x^2-6x+5=9\left(x^2-\frac{2}{3}x+\frac{5}{9}\right)\)
\(=9\left(x^2-\frac{1}{3}x-\frac{1}{3}x+\frac{5}{9}\right)\)
\(=9\left(x^2-\frac{1}{3}x-\frac{1}{3}x+\frac{1}{9}+\frac{4}{9}\right)\)
\(=9\left[x\left(x-\frac{1}{3}\right)-\frac{1}{3}\left(x-\frac{1}{3}\right)+\frac{4}{9}\right]\)
\(=9\left[\left(x-\frac{1}{3}\right)^2+\frac{4}{9}\right]\)
\(=9\left(x-\frac{1}{3}\right)^2+4\)
Cái kia tương tự.

\(H\left(x\right)=9x^4-3x^3-11x^2-7x+12\)
\(K\left(x\right)=-8x^4+10x^3+4x^2-7x-12\)
\(A\left(x\right)=H\left(x\right)-K\left(x\right)\)
\(=17x^4-10x^3-15x^2+24\)
Để \(A\left(x\right)=x^4-13x^3-14x^2\) nên \(17x^4-10x^3-15x^2+24=x^4-13x^3-14x^2\)
\(\Leftrightarrow16x^4+3x^3-x^2+24=0\)
Đến đây mình bí rồi, xin lỗi bạn!

a, Ta có : \(f\left(x\right)-g\left(x\right)=h\left(x\right)\)hay
\(4x^2+3x+1-3x^2+2x-1=h\left(x\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x\)
b, Đặt \(h\left(x\right)=x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy nghiệm của đa thức h(x) là x = -5 ; x = 0
Đặt \(k\left(x\right)=7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow7\left(x^2+2x+3x+6\right)=0\Leftrightarrow7\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)
Vậy nghiệm của đa thức k(x) là x = -3 ; x = -2
xin lỗi mọi người 1 tý nha cái phần c) ý ạ đề thì vậy như thế nhưng có cái ở phần biểu thức ở dưới ý là
\(\left(\frac{3^2}{6}-81\right)^3\) chuyển thành \(\left(\frac{3^3}{6}81\right)^3\)
bị sai mỗi thế thôi ạ mọi người giúp em với ạ

\(-3x^3\left(2ax^2-bc+c\right)=-6x^5+9x^4-3x^3\)
\(\Leftrightarrow-3x^3\left(2ax^2-bc+c\right)=-3x^3\left(2x^2-3x+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2ax^2=2x^2\\-bc=-3x\\c=1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2a=2\\-b=-3x\\c=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=3x\\c=1\end{matrix}\right.\)

Ta có: \(3x^5-x^3+6x^2-18x=213\)
\(\Rightarrow x^5-\frac{x^3}{3}+2x^2-6x=71\)
Vì x nguyên nên\(x^5,2x^2,6x\in Z\Rightarrow\frac{x^3}{3}\inℤ\)
\(\Rightarrow x^3⋮3\Rightarrow x⋮3\)(vì 3 là số nguyên tố)
Đặt x = 3k\(\Rightarrow\frac{x^3}{3}=\frac{\left(3k\right)^3}{3}=\frac{27k^3}{3}=9k^3⋮3\)
\(\Rightarrow x^5-\frac{x^3}{3}+2x^2-6x⋮3\)(vì x chia hết cho 3)
.Mà 71 chia 3 dư 2 nên không có số nguyên x thỏa mãn.
Giả sử tồn tại số nguyên x thỏa mãn đề.
Ta có : \(3x^5-x^3+6x^2-18x=213\)
Do : \(213⋮3,3x^5⋮3,6x^2⋮3,18x⋮3\)
\(\Rightarrow x^3⋮3\Rightarrow x⋮3\Rightarrow x^3⋮9\)
Lại có : \(3x^5⋮9,6x^2⋮9,18x⋮9\)
Nên : \(213⋮9\), Mặt khác \(213⋮̸9\)
Do đó không tồn tại số nguyên x thỏa mãn đề.
Chữ hơi xấu 🤡🤡🤡