K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4

cách 1 : chứng minh 2 cạnh bên bằng nhau

cách 2 : chứng minh 2 góc bất kì trong tam giác


21 tháng 4

cho vd chứ như vầy ko biết làm cách nào


26 tháng 3 2022

a, Xét tam giác ADB và tam giác ADC có 

AD _ chung ; ^DAB = ^DAC ; AB = AC

Vậy tam giác ADB = tam giác ADC (c.g.c) 

b, Xét tam giác ABC cân tại A có AD là phân giác 

đồng thời là đường cao hay AD vuông BC 

c, Xét tam giác AMD và tam giác AND có 

AD _ chung ; ^MAD = ^NAD 

Vậy tam giác AMD = tam giác AND ( ch-gn ) 

=> AM = AN ( 2 cạnh tương ứng ) 

d, Ta có AM/AB = AN/AC => MN // BC ( Ta lét đảo ) 

17 tháng 6 2020

                                                                            A B H M C E D

a) Xét \(\Delta ABC\)cân tại A có AM là trung tuyến \(\Rightarrow\)M là trung điểm BC

\(\Rightarrow MB=MC\)

Xét \(\Delta MDC\)và \(\Delta MHB\)có: +) \(\widehat{BHM}=\widehat{CDM}=90^o\)

                                                       +) \(MB=MC\)

                                                       +) \(\widehat{BMH}=\widehat{CMD}\)( đối đỉnh )

\(\Rightarrow\Delta MDC=\Delta MHB\)( cạnh huyền - góc nhọn ) ( đpcm )

b) Từ \(\Delta MDC=\Delta MHB\)\(\Rightarrow\widehat{C}=\widehat{MBH}\)( 2 góc tương ứng )

mà \(\widehat{C}=\widehat{ABC}\)\(\Delta ABC\)cân tại A ) \(\Rightarrow\widehat{ABC}=\widehat{MBH}\)

Xét \(\Delta BME\)và \(\Delta BMH\)có: +) \(\widehat{BEM}=\widehat{BHM}=90^o\)

                                                      +) chung cạnh MB

                                                      +) \(\widehat{ABC}=\widehat{HBC}\)

\(\Rightarrow\Delta BME=\Delta BMH\)( cạnh huyền - góc nhọn )

\(\Rightarrow ME=MH\)( 2 cạnh tương ứng ) \(\Rightarrow\Delta EMH\)cân tại M ( đpcm )

17 tháng 6 2020

Giúp mk vs moi người ơi!!!

5 tháng 8 2017

A/ Theo giả thiết ta có:DA=BA;AE=AC\(\Rightarrow\) DC=BE

Vì tam giác BDA là tam giác vuông cân\(\Rightarrow\)góc A=90 độ\(\Rightarrow\) DC vuông góc vs BE

B/ Áp dụng định lý Pi-ta-go cho tam giác BAD vuông tại A:BD2=BA2+AD2

                                                                               ACE vuông tại A:CE2=AC2+AE2

                                                                                ADE vuông tại A:DE2=DA2+AE2

                                                            BAC vuông tại A:BC2=AB2+AC2

                                          Từ trên suy ra:BD2+CE2=BC2+DE2

C/Xét tam giác BAC và DAE:DA=BA

                                        BA=AE

                                        GÓC BAC=GÓC DAE=90

                             \(\Rightarrow\) Tam giác BAC=DAE(c-g-c)

                             \(\rightarrow\) BC=DE(2 cạnh t/ứ)

                             \(\rightarrow\) góc CBA=góc AED(t/ứ)

                              mà 2 góc nàm vị trí so le trong\(\Rightarrow\)BC song song DE

                            \(\rightarrow\) góc BCE+góc CED=180 ĐỘ(2 góc phía trong cùng phía)

                             mà góc DCE=góc BEC(TAM GIÁC cae VUÔNG CÂN)

                             \(\Rightarrow\) Góc BCD=góc BED

                              MÀ góc BCD=CDE(so le trong)

                             \(\Rightarrow\) góc ADE=góc AED\(\Rightarrow\) TAM GIÁC ADE vuông cân tai E

                             mà ta có AI(IK cắt DE ở I)LÀ đường trung trực của tam giác

                            \(\rightarrow\) AI cx là đg trung tuyến của ADE

                            \(\Rightarrow\) I là trung điểm của DE

                           MÀ ta lại có BC=DE(cm phần trên rồi)

                          \(\Rightarrow\) k là trung điểm của BC

(ko bít vẽ hình)

6 tháng 8 2017

Sai rồi bạn ơi, đề bài cho là \(\widehat{A}< 90\) độ.

21 tháng 5 2018

A B C O M

21 tháng 5 2018

vẽ tam giác đều BCM ( M và A cùng thuộc 1 nửa mặt phẳng bờ BC )

CM được tam giác COA cân tại C

\(\widehat{ACO}=45^o-15^o=30^o\)

\(\widehat{CAO}=\left(180^o-30^o\right):2=75^o\)

\(\widehat{BAO}=90^o-75^o=15^o\)\(\widehat{ABO}=45^o-30^o=15^o\)

Vậy \(\widehat{BAO}=\widehat{ABO}\)suy ra : \(\Delta AOB\)cân tại O

14 tháng 3 2021

a) xét tam giác ABH và tam giác AHC có
AB=AC( tam giác ABC cân tại A)
BHA=CHA=\(90^0\)\(AH\perp BC\))
AH là cạnh chung
Do đó tam giác ABH = tam giác AHC( cạnh huyền- cạnh góc vuông)
A B C M N H 1 2

14 tháng 3 2021

b) có Tam giác ABH = tam giác AHC (cmt)

\(\Rightarrow\)A1=A2( 2 góc tương ứng)

xét tam giác AMH và tam giác ANH có

A!=A2( cmt)

AH là cạnh chung

AMH=ANH=\(90^0\) ( HM vuông góc với AB,HN vuông góc với AC)

Do đó  tam giác AMH và tam giác ANH( cạnh huyền góc nhọn)

\(\Rightarrow\)AM=AN( 2 cạnh tương ứng)

\(\Rightarrow\)tam giác AMN cân tại A(ĐN)