K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

19 tháng 4

Rễ hiểu????

27 tháng 8

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

27 tháng 8

đỉnh

10 tháng 9

Đúng đấy

1 giờ trước (20:24)

Ko bít nữa.

ĐKXĐ: \(2x-x^2\ge0\)

=>\(x^2-2x\le0\)

=>x(x-2)<=0

=>0<=x<=2

0<=x<=2 nên 0>=-x>=-2

=>0>=-x+1>=-2+1

=>0>=-x+1>=-1

\(y=\sqrt{2x-x^2}-x\)

=>\(y^{\prime}=\frac{\left(2x-x^2\right)^{\prime}}{2\cdot\sqrt{2x-x^2}}-1=\frac{2-2x}{2\cdot\sqrt{2x-x^2}}-1=\frac{1-x}{\sqrt{2x-x^2}}-1\)

Đặt y'<0

=>\(\frac{1-x}{\sqrt{2x-x^2}}-1<0\) (1)

=>\(\frac{1-x}{\sqrt{2x-x^2}}<1\)

TH1: 1-x<0

=>x>1

=>1<x<=2

Khi đó, ta sẽ có:\(\frac{1-x}{\sqrt{2x-x^2}}<0\) <1

=>(1) luôn đúng với mọi x>1

Kết hợp ĐKXĐ, ta được: 1<x<=2(2)

TH2: 1-x>=0

=>x<=1

(1) sẽ tương đương với: \(\frac{\left(1-x\right)^2}{2x-x^2}<1\)

=>\(\left(1-x\right)^2<2x-x^2\)

=>\(x^2-2x+1-2x+x^2\le0\)

=>\(2x^2-4x+1\le0\)

=>\(x^2-2x+\frac12\le0\)

=>\(x^2-2x+1-\frac12\le0\)

=>\(\left(x-1\right)^2\le\frac12\)

=>\(-\frac{\sqrt2}{2}\le x-1\le\frac{\sqrt2}{2}\)

=>\(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

Kết hợp ĐKXĐ, ta được: \(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

=>0,29<x<1,71(3)

Từ (2),(3) suy ra Hàm số nghịch biến trên khoảng (1;2)

=>Chọn C

22 tháng 11 2016

1, Đổi chỗ 3 viên ở 3 đỉnh tam giác: viên dưới cùng lên đỉnh trên cùng, 2 viên ngoài cùng ở 2 bên đảo xuốn đáy

2, 8-6+2=4; 12-5+8=15; 13-10+15=18. x=15

3,

*) \(5^3+5=130;3^3+3=30;2^3+2=10;1^3+1=2\)

*) 2+3=8 hay 2.(2+3)-2=8

4+5=32 hay 4.(4+5)-4=32

5+8=60 hay 5.(5+8)-5=60

6+7=72 hay 6.(6+7)-6=72

7+8= 7.(7+8)-7=98

 

23 tháng 11 2016

HACK

22 tháng 6 2019

Ta có: \(f\left(x\right)=y=\frac{x^2+mx}{1-x}\Rightarrow y'=\frac{\left(2x+mx\right)\left(1-x\right)+\left(x^2+mx\right)}{\left(1-x\right)^2}=\frac{-x^2+2x+m}{\left(1-x\right)^2}\)\(\)\(\left(D=R/\left\{1\right\}\right)\)

Đặt \(g\left(x\right)=-x^2+2x+m\)\(\Rightarrow\)f(x) cùng dấu với y' trên D

Xét pt g(x)=0

\(\Delta'=m+1\), Hàm số có 2 điểm cực trì<=> pt có 2 nghiệm phân biệt khác 1

\(\Leftrightarrow\hept{\begin{cases}\Delta'>0\\f\left(1\right)\ne0\end{cases}\Leftrightarrow m>-1}\)

Khi đó 2 điểm cực trì là A(x1,f(x1) ) và B(x2, f(x2) )

Lại có \(f'\left(x_1\right)=\frac{\left(2x_1+m\right)\left(1-x_1\right)+\left(x_1^2+mx_1\right)}{\left(1-x_1\right)^2}=0\Rightarrow x_1^2+mx_1=-\left(2x_1+m\right)\left(1-x_1\right)\)

\(\Rightarrow f\left(x_1\right)=\frac{x_1^2+mx_1}{1-x_1}=-2x_1-m.\)

=>\(f\left(x_2\right)=-2x_2-m\)

Khoảng cách giữa 2 điểm cực trị:

\(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}=\sqrt{\left(x_1-x_2\right)^2+\left(2x_1-2x_2\right)^2}=|x_1-x_2|\sqrt{5}=10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=20\)

A/d Vi-ét cho pt g(x)=0\(\Rightarrow4+4m=20\Leftrightarrow m=4\)

Vậy m=4

M
22 tháng 6 2019

Bạn giải thích cho mình chỗ trị tuyệt đối x1- x2 nhân căn 5 với ạ?

8 tháng 4 2017

Tập hợp số z thỏa mãn là 1 elip nhận (0;1) và (0;-1) làm tiêu điểm

Cái này nằm ngoài chương trình phổ thông nên bạn đừng quan tâm