Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình như bạn nhầm đề r , phải sửa như thế này nhé
Cho hình vuông ABCD. M, N lần lượt là trung điểm của AB và BC.CM, DN cắt nhau tại I. chưng minh AD=IA?
Tam giác L BCM = tam giác L CDN (2 cạnh góc L = nhau)
=> CDN^ = BCM^
lại có:
BMC^ = DCI^ (so le trong)
=> CID^ =CBM^ = 1v (xét 2 tam giác CDI và CBM)
gọi P là trung điểm của CD và Q là giao điểm của AP và DN
ta có tứ giác AMCP là hình bình hành vì có AM//=CP
=> AP // CM
=> AP L DN
xét tam giác DCI có P là trung điểm của CD và PQ // CI nên Q là trung điểm của DI
vậy AQ là đường cao vùa là trung tuyến của tam giác ADI => tam giác ADI cân tại A => AD=AI

Trên tia đối của tia \(AM\) lấy \(I\) sao cho: \(AI=CE\)
Xét \(\Delta ADI\) và \(\Delta CDE\) có:
\(AD=CD\left(gt\right)\)
\(\widehat{DAI}=\widehat{DCE}=90^o\)
\(AI=CE\left(gt\right)\)
Vậy \(\Delta ADI=\Delta CDE\left(c.g.c\right)\)
\(\Leftrightarrow\widehat{IDA}=\widehat{EDC}\) ( 2 góc t/ứng )
\(\Leftrightarrow\widehat{AID}=\widehat{CED}\) ( 2 góc t/ứng )
\(\Leftrightarrow\) \(\widehat{CED}=\widehat{ADE}\) mà 2 góc này ở vị trí so le trong ( do \(AD//BC\) )
\(\Rightarrow\widehat{AID}=\widehat{ADE}\left(1\right)\)
Ta có: \(\widehat{ADE}=\widehat{ADM}+\widehat{MDE}\left(2\right)\)
Vì \(\widehat{MDE}=\widehat{EDC}\)
\(\Rightarrow\widehat{MED}=\widehat{IDA}\left(3\right)\)
Từ \(\left(2\right);\left(3\right)\Rightarrow\widehat{ADE}=\widehat{ADM}+\widehat{IDA}=\widehat{IDM}\left(4\right)\)
Từ \(\left(1\right);\left(4\right)\Rightarrow\widehat{AID}=\widehat{IDM}\)
\(\Leftrightarrow\widehat{MID}=\widehat{IDM}\)
\(\Leftrightarrow\Delta IDM\) cân \(\left\{M\right\}\)
\(\Leftrightarrow DM=IM\)
Ta lại có: \(IM=AM+AI=AM+CE\)
\(\Rightarrow DM=AM+CE\)
Lên google tìm đi chị🙏🙏🙏
\(B M = M C \text{v} \overset{ˋ}{\text{a}} A K = K D\)
Ta biết rằng diện tích của một tam giác có thể tính theo công thức:
\(S = \frac{1}{2} \times độ\&\text{nbsp};\text{d} \overset{ˋ}{\text{a}} \text{i}\&\text{nbsp};đ \overset{ˊ}{\text{a}} \text{y} \times \text{chi} \overset{ˋ}{\hat{\text{e}}} \text{u}\&\text{nbsp};\text{cao} .\)
Khi các đường chéo cắt nhau, ta có thể tính diện tích của các tam giác con trong tứ giác thông qua các đoạn thẳng cắt nhau.
Diện tích của các tam giác trong tứ giác:
\(S_{A B H} = \frac{1}{2} \times A B \times h_{A B H} ,\)
trong đó \(h_{A B H}\) là chiều cao từ \(H\) xuống đáy \(A B\).
\(S_{C D L} = \frac{1}{2} \times C D \times h_{C D L} ,\)
trong đó \(h_{C D L}\) là chiều cao từ \(L\) xuống đáy \(C D\).
Tổng diện tích của tứ giác \(H K L M\) có thể được chia thành diện tích của các tam giác nhỏ:
\(S_{H K L M} = S_{A B H} + S_{C D L} .\)Do đó, ta đã chứng minh rằng diện tích của tứ giác \(H K L M\) bằng tổng diện tích của hai tam giác \(A B H\) và \(C D L\), như yêu cầu.
Kết luận:
Diện tích tứ giác \(H K L M\) bằng tổng diện tích của hai tam giác \(A B H\) và \(C D L\).