K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{EAB}\) chung

Do đó: ΔAEB~ΔAFC

b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔHFB~ΔHEC

=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)

=>\(\dfrac{HF}{HB}=\dfrac{HE}{HC}\)

Xét ΔHFE và ΔHBC có

\(\dfrac{HF}{HB}=\dfrac{HE}{HC}\)

\(\widehat{FHE}=\widehat{BHC}\)(hai góc đối đỉnh)

Do đó: ΔHFE~ΔHBC

c: Xét ΔBFC vuông tại F và ΔBDA vuông tại D có

\(\widehat{FBC}\) chung

Do đó: ΔBFC~ΔBDA

=>\(\dfrac{BF}{BD}=\dfrac{BC}{BA}\)

=>\(BF\cdot BA=BD\cdot BC\)

Xét ΔCEB vuông tại E và ΔCDA vuông tại D có

\(\widehat{ECB}\) chung

Do đó: ΔCEB~ΔCDA

=>\(\dfrac{CE}{CD}=\dfrac{CB}{CA}\)

=>\(CE\cdot CA=CD\cdot CB\)

\(BF\cdot BA+CE\cdot CA\)

\(=BD\cdot BC+CD\cdot BC=BC\left(BD+CD\right)=BC^2\)

9 tháng 4

a)

Vì AD, BE, CF là các đường cao của tam giác ABC nên AD vuông góc với BC, BE vuông góc với AC, CF vuông góc với AB.

Tam giác AHE vuông ở H và tam giác BHD vuông ở D có:

ˆAHE=ˆBHDAHE^=BHD^ (hai góc đối đỉnh)

Do đó, ∆AHE ᔕ ∆BHD (góc nhọn).

Suy ra AHBH=HEHDAHBH=HEHD nên HA . HD = HB . HE (1).

Tam giác HBF vuông ở F và tam giác HCE vuông ở E có:

ˆBHF=ˆEHCBHF^=EHC^ (hai góc đối đỉnh)

Do đó, ∆HBF ᔕ ∆HCE (góc nhọn).

Suy ra HBHC=HFHEHBHC=HFHE nên HB . HE = HC . HF (2).

Từ (1) và (2) ta có: HA . HD = HB . HE = HC . HF.

b)

Tam giác AFC vuông ở F và tam giác AEB vuông ở E có:

ˆBACBAC^ chung.

Do đó, ∆AFC ᔕ ∆AEB (góc nhọn)

Suy ra AFAE=ACABAFAE=ACAB nên AF . AB = AE . AC.

c)

Vì HA . HD = HB . HE nên HAHE=HBHDHAHE=HBHD

Tam giác HAB và tam giác HED có:

HAHE=HBHDHAHE=HBHD (cmt)

ˆAHB=ˆEHDAHB^=EHD^ (hai góc đối đỉnh)

Do đó, ∆AHB ᔕ ∆EHD (c.g.c).

Suy ra ˆHAB=ˆHEDHAB^=HED^.

Mà ˆHAB+ˆFBD=ˆHED+ˆDECHAB^+FBD^=HED^+DEC^ (= 90∘90∘).

Do đó, ˆFBD=ˆDECFBD^=DEC^.

Chứng minh tương tự ta có: ˆBFD=ˆECDBFD^=ECD^.

Tam giác BDF và tam giác EDC có:

ˆFBD=ˆDECFBD^=DEC^ (cmt)

ˆBFD=ˆECDBFD^=ECD^ (cmt)

Do đó, ∆BDF ᔕ ∆EDC (g.g).

Suy ra: ˆBDF=ˆEDCBDF^=EDC^.

Mà ˆBDF+ˆFDH=ˆEDC+ˆHDE(=90∘)BDF^+FDH^=EDC^+HDE^(=90∘).

Do đó, ˆFDH=ˆHDEFDH^=HDE^ hay ˆFDA=ˆADEFDA^=ADE^.

Vậy DA là tia phân giác của góc EDF.

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AC=AF\cdot AB\)(ĐPCM)

b)

Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\hat{DAB}\) chung

Do đó: ΔADB~ΔAEC

b: Xét ΔFEB vuông tại E và ΔFDC vuông tại D có

\(\hat{EFB}=\hat{DFC}\) (hai góc đối đỉnh)

Do đó: ΔFEB~ΔFDC

=>\(\frac{EF}{DF}=\frac{EB}{DC}\)

=>\(EF\cdot DC=EB\cdot DF\)

c: Ta có: BH⊥BA

CF⊥AB

Do đó: BH//CF

Ta có: BF⊥CA

CH⊥CA

Do đó: BF//CH

Xét tứ giác BFCH có

BF//CH

BH//CF

Do đó: BFCH là hình bình hành

=>BC cắt FH tại trung điểm của mỗi đường

mà G là trung điểm của BC

nên G là trung điểm của FH

Xét ΔAFH có

G,I lần lượt là trung điểm của FH,FA

=>GI là đường trung bình của ΔAFH

=>GI//AH và \(GI=\frac12AH\)

=>AH=2GI

ΔEBC vuông tại E

mà EG là đường trung tuyến

nên GE=GB=GC

Xét ΔGEB có \(\hat{EGC}\) là góc ngoài tại đỉnh G

nên \(\hat{EGC}=\hat{GEB}+\hat{GBE}=2\cdot\hat{GBE}=2\cdot\hat{ABC}\) (1)

ΔAFE vuông tại E

mà EI là đường trung tuyến

nên IE=IF=IA

Xét ΔEIF có \(\hat{EIA}\) là góc ngoài tại đỉnh I

nên \(\hat{EIA}=\hat{IEF}+\hat{IFE}=2\cdot\hat{IFE}\) (2)

Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại F

Do đó: F là trực tâm của ΔABC

=>AF⊥BC

=>\(\hat{FAB}+\hat{ABC}=90^0\)

\(\hat{FAB}+\hat{AFE}=90^0\)

nên \(\hat{ABC}=\hat{AFE}\) (3)

Từ (1),(2),(3) suy ra \(\hat{EIA}=\hat{EGC}\)

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

b: Ta có: ΔAEB\(\sim\)ΔAFC

nên AE/AF=AB/AC
hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có 

AE/AB=AF/AC

\(\widehat{EAF}\) chung

DO đó: ΔAEF\(\sim\)ΔABC

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF;AE/AB=AF/AC

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng vói ΔABC

=>\(\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\dfrac{1}{4}\)

=>\(S_{ABC}=4\cdot S_{AEF}\)

29 tháng 4 2020

+) Câu d sửa đề thành BF . BA + CE . CA = BC2

a, Xét △AFH vuông tại F và △ADB vuông tại D

Có: FAH là góc chung

=> △AFH ᔕ △ADB (g.g)

b, Vì △AFH ᔕ △ADB (cmt) \(\Rightarrow\frac{AF}{AD}=\frac{AH}{AB}\)\(\Rightarrow\frac{AB}{AD}=\frac{AH}{AF}\)

Xét △ABH và △ADF

Có: \(\frac{AB}{AD}=\frac{AH}{AF}\)(cmt)

        BAH là góc chung

=> △ABH ᔕ △ADF (c.g.c)

c, Xét △HFB vuông tại F và △HEC vuông tại E

Có: FHB = EHC (2 góc đối đỉnh)

=> △HFB ᔕ △HEC (g.g)

\(\Rightarrow\frac{HF}{HE}=\frac{HB}{HC}\)

=> HF . HC = HE . HB  

d, Sửa đề thành BF . BA + CE . CA = BC2

Xét △HEC vuông tại E và △AFC vuông tại F

Có: HCE là góc chung

=> △HEC ᔕ △AFC (g.g)

\(\Rightarrow\frac{EC}{FC}=\frac{HC}{AC}\)

=> FC . HC = EC . AC  (1)

Xét △HFB vuông tại F và △AEB vuông tại E

Có: FBH là góc chung

=> △HFB ᔕ △AEB (g.g)

\(\Rightarrow\frac{FB}{EB}=\frac{HB}{AB}\)

=> FB . AB = EB . HB  (2)

Xét △BFC vuông tại F và △HDC vuông tại D

Có: HCD là góc chung

=> △BFC ᔕ △HDC (g.g)

\(\Rightarrow\frac{FC}{DC}=\frac{BC}{HC}\)

=> FC . HC = BC . DC (3)

Xét △BEC vuông tại E và △BDH vuông tại D

Có: HBD là góc chung

=> △BEC ᔕ △BDH (g.g)

\(\Rightarrow\frac{BC}{BH}=\frac{BE}{DB}\)

=> BC . DB = BE . BH (4)

Từ (1) và (3) => EC . AC = BC . DC

Từ (2) và (4) => FB . AB = BC . DB 

Ta có: BF . BA + CE . CA = BC . BD + BC . DC = BC . (BD + DC) = BC . BC = BC2

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB∼ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF∼ΔABC(c-g-c)