K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2021

a, Ta có : \(P\left(x\right)=5x^4-3x^2+3x-1-5x^4+4x^2-x-x^2+2\)

\(=2x+1\)

b,*  Thay x = 0 vào biểu thức trên ta có : \(2.0+1=1\)

Vậy nếu x = 0 thì biểu thức nhận giá trị 1 

* Thay x = -1 vào biểu thức trên ta có : \(2\left(-1\right)+1=-2+1=-1\)

Vậy nếu x = -1 thì biểu thức nhận giá trị là -1 

* Thay x = 1/2 vào biểu thức trên ta có : \(2.\frac{1}{2}+1=1+1=2\)

Vậy nếu x = 1/2 thì biểu thức nhận giá trị là 2 

c, Ta có \(P\left(x\right)=0\)hay \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

Ta có \(P\left(x\right)=1\)hay \(2x+1=1\Leftrightarrow x=0\)

\(R=3x^2+5\)tại x = -1 ; x = 0 ; x = 3

TH1 : Ta thay đa thức trên có x = -1

\(3.\left(-1\right)^2+5=3.1+5=8\)

TH2 : Ta thay đa thức trên có x = 0 

\(3.0^2+5=3.0.5=0\)

TH3 : Ta thay đa thức trên có x = 3

\(3.3^2+5=3.9+5=27+5=32\)

Ta KL đc : R luôn dương với mọi giá trị x 

12 tháng 4 2024

Bài 1:

|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}

A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5

A(-1) = \(\dfrac{2}{9}\) + 1 + 5

A (-1) = \(\dfrac{56}{9}\)

A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5

A(1) = \(\dfrac{2}{9}\) - 1 + 5

A(1) = \(\dfrac{38}{9}\)

 

12 tháng 4 2024

|y| = 1 ⇒ y \(\in\) {-1; 1} 

⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))

B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)

B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))- 3.(-\(\dfrac{1}{3}\)).1 + 12

B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1

B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\) 

B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)

B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2

B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1

B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)

 

21 tháng 8 2016

3x-5.2.4+2.23=0

=>3x=0

=>x=0:3

=>x=0

Chúc bạn học giỏi nha!!!!!

21 tháng 8 2016

3x-5.2.4+2.23=0

=>0=3x-40+16

=>3x-40=0-16

=>3x-40=-16

=>3x=-16+40

=>3x=24

=>x=24:3

=>x=8

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

20 tháng 2 2020

a) M(x) = A(x) - 2B(x) + C(x)

\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2(x5 - 2x4 + x2 - 5x + 3) + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)

\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2x5 - 4x4 - 2x2 + 10x - 6 + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)

\(\Leftrightarrow\)M(x) = (2x5 - 2x5) + (-4x3 + 4x3) + (x2 - 2x2 + 3x2) + (-2x + 10x - 8x) + (2 - 6 + \(4\frac{3}{16}\))

\(\Leftrightarrow\)M(x) = 2x2 + \(\frac{3}{16}\)

b) Thay \(x=-\sqrt{0,25}\)vào M(x), ta được:

\(M\left(x\right)=2\left(-\sqrt{0,25}\right)^2+\frac{3}{16}\)

\(M\left(x\right)=2.0,25+\frac{3}{16}\)

\(M\left(x\right)=0,5+\frac{3}{16}\)

\(M\left(x\right)=\frac{11}{16}\)

c) Ta có : \(x^2\ge0\)

\(\Leftrightarrow2x^2+\frac{3}{16}\ge\frac{3}{16}\)

Vậy để \(M\left(x\right)=0\Leftrightarrow x\in\varnothing\)

5 tháng 2 2016

1. 3x2 - 50x = 0 <=> x(3x - 50) = 0

=> x = 0 hoặc 3x - 50 = 0 hay x = 50/3

2. 23x + 2 = 4x + 5 <=> 23x + 2 = 22x + 10

=> 3x + 2 = 2x + 10 => x = 8

3. C = (x2 + 13)2 =( x4 + 26x2) + 169

Ta thấy: ( x4 + 26x2)\(\ge\)0 nên ( x4 + 26x2) + 169 \(\ge\) 0 + 169

dấu bằng xảy ra khi ( x4 + 26x2) = 0 => GTNN của C = 169

4. \(\frac{3}{x+1}\)có giá trị nguyên khi và chỉ khi 3 chia hết cho x + 1

hay x + 1 \(\in\)Ư(3)={ -1;2;-3;3}

\(\in\){-2;1;-4;2}

Vậy số nguyên x nhỏ nhất là - 4 để \(\frac{3}{x+1}\) có giá trị nguyên

5 tháng 1 2021

Đặt \(\frac{x}{-5}=\frac{y}{6}=\frac{z}{-2}=k\)  \(\left(k\ne0\right)\)

\(\Rightarrow x=-5k;y=6k;z=-2k\)

\(\Rightarrow A=\frac{3.k.\left(-5\right)+6.k-2.\left(-2\right).k}{-3.\left(-5\right).k-5.6.k+6.\left(-2\right).k}=\frac{-15k+6k+4k}{15k-30k-12k}=\frac{-5k}{-27k}=\frac{5}{27}\)

Vậy \(A=\frac{5}{27}\).