K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B\left(x\right)=3x+5x^3-3x^4+6x-7\)

\(=-3x^4+5x^3+\left(3x+6x\right)-7\)

\(=-3x^4+5x^3+9x-7\)

4 tháng 4

B(x)=−3x4+5x3+9x−7

20 tháng 4 2020

Bạn phải cho câu hỏi chứ , viết thế này ai hiểu nhonhung

20 tháng 4 2020

Câu hỏi đâu rồi bạn?

a) Ta có:

\(P\left(x\right)=5x^3+2x^4-x^2+3x^2-3x^3-x^4+1-4x^3\)

\(\Rightarrow P\left(x\right)=2x^4-x^4+5x^3-3x^3-4x^3-x^2+3x^2+1\)

\(\Rightarrow P\left(x\right)=x^4-2x^3+2x^2+1\)

21 tháng 5 2021
Ghi rõ đề ra bn ơi
22 tháng 5 2021

\(2A\left(x\right)-B\left(x\right)=2\left(-3x^4+3x^3+7x^2-6x-2\right)-\left(-5x^4+2x^3-x^2+7\right)\)

\(=-6x^4+6x^3+14x^2-12x-4+5x^4-2x^3+x^2-7\)

\(\Rightarrow2A\left(x\right)-B\left(x\right)=-x^4+4x^3+15x^2-12x-11\)

24 tháng 7 2019

a.\(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)

\(=2x^2+5x+8+\sqrt{x}=2x^2+5x+28\Leftrightarrow\sqrt{x}=20\Leftrightarrow x=400.\)

b.\(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)

\(=3\sqrt{x}+7x+5=\sqrt{x}+7x+12\Leftrightarrow2\sqrt{x}=7\Leftrightarrow x=\frac{49}{4}.\)

c.\(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12.\)

\(=8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4.\)

d.\(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)

\(=2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-19\Leftrightarrow4\sqrt{3x}=1\)

\(\Leftrightarrow\sqrt{3x}=\frac{1}{4}\Leftrightarrow3x=\frac{1}{16}\Leftrightarrow x=\frac{1}{48}.\)

24 tháng 7 2019

a) \(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)

<=> \(2x^2+5x+8+\sqrt{x}=2x^2+5x+28\)

<=> \(2x^2+5x+8+\sqrt{x}-\left(2x^2+5\right)=28\)

<=> \(\sqrt{x}+8=28\)

<=> \(\sqrt{x}=28-8\)

<=> \(\sqrt{x}=20\)

<=> \(\left(\sqrt{x}\right)^2=20^2\)

<=> x = 400

=> x = 400

b) \(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)

<=> \(3\sqrt{x}+7x+5=7x+\sqrt{x}+12\)

<=> \(3\sqrt{x}+5=7x+\sqrt{x}+12-7x\)

<=> \(3\sqrt{x}+5=\sqrt{x}+12\)

<=> \(3\sqrt{x}=\sqrt{x}+12-5\)

<=> \(3\sqrt{x}=\sqrt{x}+7\)

<=> \(3\sqrt{x}-\sqrt{x}=7\)

<=> \(2\sqrt{x}=7\)

<=> \(\sqrt{x}=\frac{7}{2}\)

<=> \(\left(\sqrt{x}\right)^2=\left(\frac{7}{2}\right)^2\)

<=> \(x=\frac{49}{4}\)

=> \(x=\frac{49}{4}\)

c) \(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12\)

<=> \(8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\)

<=> \(8\sqrt{x}-9=2x+6\sqrt{x}-5-2x\)

<=> \(8\sqrt{x}-9=6\sqrt{x}-5\)

<=> \(8\sqrt{x}=6\sqrt{x}-5+9\)

<=> \(8\sqrt{x}=6\sqrt{x}+4\)

<=> \(8\sqrt{x}-6\sqrt{x}=4\)

<=> \(2\sqrt{x}=4\)

<=> \(\sqrt{x}=2\)

<=> \(\left(\sqrt{x}\right)^2=2^2\)

<=> x = 4

=> x = 4

d) \(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)

<=> \(2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-18\)

<=> \(2\sqrt{3x}+11x-18-\left(11x-18\right)=6\sqrt{3x}\)

<=>\(2\sqrt{3x}=6\sqrt{3x}\)

<=> \(2\sqrt{3x}-6\sqrt{3x}=0\)

<=>\(-4\sqrt{3x}=0\)

<=> \(\sqrt{3x}=0\)

<=> \(\left(\sqrt{3x}\right)^2=0^2\)

<=> 3x = 0

<=> x = 0

=> x = 0

20 tháng 10 2015

à, phần a ra x = 400. Nhầm

30 tháng 4 2019

Ta có: A(x) = -4x5 - x3 + 4x2 + 5x + 9 + 4x- 6x2 - 2

A(x) = (-4x5 + 4x5) - x3 + (4x2 - 6x2) + 5x + (9 - 2)

A(x) = -x3 - 2x2 + 5x + 7

B(x) = -3x4 - 2x3 + 10x2 - 8x + 5x3 - 7 - 2x3 + 8x

B(x) = -3x4 - (2x3 - 5x3 + 2x3) + 10x2 - (8x - 8x) - 7

B(x) = -3x4 + x3 + 10x2 - 7

30 tháng 4 2019

A(x) + B(x) = (-x3 - 2x2 + 5x + 7) + (-3x4 + x3 + 10x2 - 7)

  = -x3 - 2x2 + 5x + 7 - 3x4 + x3 + 10x2 - 7

 = (-x3 + x3) - (2x2 - 10x2) + 5x + (7 - 7)

 = 8x2 + 5x

A(x) - B(x) = (-x^3 - 2x^2 + 5x + 7) - (-3x^4 + x^3 + 10x^2 - 7)

= -x^3 - 2x^2 + 5x + 7 + 3x^4 - x^3 - 10x^2 + 7

= (-x^3 - x^3) - (2x^2 + 10x^2) + 5x + (7 + 7)

= -2x^3 - 12x^2 + 5x + 14

5 tháng 6 2020

thanhk bạn

20 tháng 4 2016

Thay x=1 vào A(x) tính được A(x)=-17 nên x=1 ko là nghiệm của A(x)

Thay x=1 vào B(x), B(x)=0 nên x=1 là nghiệm B(x)