Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
DO đó: ΔABE=ΔADE
b: Ta có: ΔABD cân tại A
mà AI là đường phân giác
nên I là trung điểm của BD

Hình bn tự vẽ nhé!!!!!
a. Ta có :
52 = 25
32 + 42 = 25
=> 52 = 32 + 42 hay BC2 = AB2 + AC2
=> ΔABCΔABC vuông tại A
b.Xét ΔABDΔABD và ΔEBDΔEBD ,có :
BD : cạnh chung
ABDˆ=EBDˆABD^=EBD^ ( BD là tia phân giác của góc B )
BADˆ=BEDˆ=900BAD^=BED^=900
=> ΔABD=ΔEBDΔABD=ΔEBD ( cạnh huyền - góc nhọn )
=> DA = DE
c.Xét ΔADFΔADF và ΔEDCΔEDC ,có :
DA = DE ( c/m b )
FADˆ=DECˆ=900FAD^=DEC^=900
ADFˆ=EDCˆADF^=EDC^ ( 2 góc đối đỉnh )
=> ΔADF=ΔEDCΔADF=ΔEDC ( g.c.g hoặc cạnh góc vuông - góc nhọn kề )
=> DF = DC (1)
mà DC > DE (2) ( trong tam giác vuông cạnh huyền lớn hơn cạnh góc vuông )
Từ (1) và (2) => DF > DE (đpcm )

Thời gian tào hỏa đi là:
20 - 4 = 16(phút)
Quãng đường AB là:
120 x 16 = 1920(km)
Đáp số: 1920 km

bạn tự vẽ hình
a, ta có AB^2+AC^2=3^2+4^2=9+16=25
BC^2=5^2=25
do đó tam giác ABC vuông tại A ( theo pitago)
b,Xét tam giác ADB và tam giác EDB có góc A=góc E ( cùng bằng 90 độ)
BD chung
góc ABD=góc EBD ( BD là pg của góc B)
do đó tam giác ADB=tam giác EDB ( cạnh huyền góc nhọn)
=> DA=DE(2 cạnh tương ứng)
c,tự cm

a ) Ta có :
+) \(AB< AC\) ( gt )
\(\Rightarrow ACB< ABC\) ( quan hệ gữa góc và cạnh đối diện )
+ ) \(ABH+BAH+AHB=180\)( tổng ba góc trong một tam giác )
\(\Rightarrow ABH+60+90=180\)
\(\Rightarrow ABH=30\)
b ) Ta có :\(AD\)là phân giác góc \(A\) ( gt )
\(\Rightarrow BAD=CAD=\frac{BAC}{2}=\frac{60}{2}=30\)
Mà \(ABH=30\) ( cmt )
\(\Rightarrow ABH=BAD\)
\(\Rightarrow ABH=BAI\)
Xét tam giác \(AIB\) và tam giác \(BHA\) có :
\(AB\) chung
\(AIB=BHA=90\)
\(BAI=ABH\)
\(\Rightarrow\) tam giác \(AIB\) \(=\) tam giác \(BHA\) ( g - c - g )
c ) Xét tam giác \(ABI\) có :
\(ABI+BAI+AIB=180\)( tổng ba góc trong một tam giác )
\(\Rightarrow ABI+30+90=180\)
\(\Rightarrow ABI=60\)
\(\Rightarrow ABE=60\) ( 1 )
Xét tam giác \(ABE\) có :
\(ABE+BAE+AEB=180\) ( tổng ba góc trong một tam giác )
\(\Rightarrow60+60+AEB=180\)
\(\Rightarrow AEB=60\) ( 2 )
Mà \(BAE=60\) ( gt ) ( 3 )
Từ ( 1 ) ; ( 2 ) ; ( 3 )
\(\Rightarrow\) tam giác \(ABE\) đều
Chứng minh câu d:
A B C D H E I 1
Ta có: AE = AB < AC
=> E thuộc canh AC
\(\Delta\)ABE đều mà AD vuông BE tại I => AD là đường trung trực của DE => DB = DE (1)
Dễ chứng minh \(\Delta\)ABD = \(\Delta\)AED
=> ^ABD = ^AED => ^B1 = ^DEC ( góc ngoài )
mà ^B1 là góc ngoài của \(\Delta\)ABC tại B => ^B1 > ^C
=> ^DEC > ^C = ^ECD
Xét trong \(\Delta\)DEC có: ^DEC > ^ECD => DC > DE (2)
Từ (1); (2) => DC > DB

A B C D E F I 1 2 1
Cm: a) Xét t/giác ADB và t/giác EDB
có \(\widehat{BAD}=\widehat{BED}=90^0\)(gt)
BD : chung
\(\widehat{B_1}=\widehat{B_2}\)(gt)
=> t/giác ADB = t/giác EDB (ch - gn)
=> AB = BE ; AD = ED (các cặp cạnh t/ứng)
+) AD = ED => D thuộc đường trung trực của AE
+) AB = BE => B thuộc đường trung trực của AE
mà D \(\ne\)B => DB là đường trung trực của AE
=> DB \(\perp\)AE
b) Xét t/giác ADF và t/giác EDC
có: \(\widehat{A_1}=\widehat{DEC}=90^0\)(gt)
AD = DE (cmt)
\(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh)
=> t/giác ADF = t/giác EDC (g.c.g)
=> DF = DC (2 cạnh t/ứng)
c) Ta có: AD < DF (cgv < ch)
Mà DF = DC (cmt)
=> AD < DC
d) Xét t/giác ABC có AB > AC
=> \(\widehat{BCA}>\widehat{B}\) (quan hệ giữa cạnh và góc đối diện)
=> \(\frac{1}{2}.\widehat{BCA}>\frac{1}{2}.\widehat{B}\)
hay \(\widehat{ICB}>\widehat{B_2}\)
=> BI > IC (quan hệ giữa góc và cạnh đối diện)
a) Xét tam giác vuông BED và tam giác vuông BAD ta có :
ABD = EBD ( BD là pg ABC )
BD chung
=> Tam giác BED = tam giác BAD ( ch-gn)
= >AD = DE( tg ứng)
b) Xét tam giác vuông AFD và tam giác vuông EDC ta có :
AD = DE (cmt)
ADF = EDC ( đối đỉnh)
=> Tam giác AFD = tam giác EDC ( cgv-gn)
=> DF = DC (dpcm)
c) Xét tam giác vuông DEC có
DE < DC( quan hệ giữa cạnh huyền và cạnh góc vuông trong tam giác)
Mà AD = DE (cmt)
=> AD < DC
d) chịu
a: Xét ΔABC có AB<AC<BC
mà \(\widehat{ACB};\widehat{ABC};\widehat{BAC}\) lần lượt là góc đối diện của các cạnh AB,AC,BC
nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>BA=BD
c: ΔBAD=ΔBED
=>DA=DE
d: ΔEHD vuông tại H
=>ED là cạnh huyền
=>EH<ED
mà ED=DA
nên EH<DA
a) Xét △ABC có: \(AB
b) Xét △ADB có: BA là cạnh góc vuông, BD là cạnh huyền
Do đó: BA < BD
c) Xét △ABD vuông tại A và △ADE vuông tại E có:
\(\hat{ABD}=\hat{BDE}\)
BD chung
\(\Rightarrow\triangle ADB=\triangle ADE\left(\ch-gn\right)\)
\(\Rightarrow AD=ED\)
d) Xét △EDH có: ED là cạnh huyền, EH là cạnh góc vuông \(\Rightarrow ED>EH\)
Ta có: AD = ED
Từ 2 điều này \(\Rightarrow AD>EH\)